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Abstract: The intradiscal pressure has been essential for prevent the spinal 

complaints by forming a basis for clinical advice to promote the correct sitting 

postures. As a consequence, it is evident the need of an accurate method for 

measure the intradiscal pressure, to better understand the disc response to 

hydorstatic pressure fluctuations. Numerous reviews regarding disc mechanics 

are available, including intradiscal pressure benchmarks; however, an analysis 

on the techniques of intradiscal pressure measurement is needed. Therefore, this 

review will remain focused on the methodologies adopted for measure the 

intradiscal pressure in several conditions: for different daily activities, under 

external loads and for values where occurs annulus fibrosus disruption. The 

importance of the intradiscal pressure on disc function will be discussed as well 

as the some guidelines for design new measurement techniques will be defined.  
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1 Introduction 

 

The intervertebral disc (IVD) is a fibrocartilage structure located between two 

vertebral bodies, which is surrounded by ligaments and muscles 
23

. This intricate 

organization is comprised by a peripheral angle-ply laminate ring, the annulus fi-

brosus (AF) with a gelatinous nucleus in its center (NP), and it is limited above 

and beyond by the cartilaginous endplates (CEP)
14

 (Fig. 1). 

The IVD plays an important role at spinal level: it is responsible for the spine 

motion, helping the spine on the weight support and load transfer from head and 

upper torso to the pelvis
15,28

. The IVD is specially designed to perform these func-

tions, since the mechanical response of disc to loading is time-dependent 
25

: while 

the short time response is governed by viscoelastic phenomena
2,6

, the long term 

response is guided by poroelastic and osmotic events
20,25

. 
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Moreover, in opposition to the AF generally considered as a fibrous solid
1
, the 

NP presents an high water content, revealing a fluid-like behavior
1
. Thus, a 

healthy NP is capable of sustain stress gradients due to hydrostatic pressure exhib-

ited by NP, normally known as intradiscal pressure (IDP)
3
 (Fig. 1). 

 

Fig. 1 – Representation of the intervertebral disc and the schematic concept of intradiscal 

pressure 

The IDP varied with body posture and with direct compressive force applied
19

. 

In this review, the importance of the IDP on intervertebral disc function will be 

discussed and the criteria for design new IDP measurement techniques will be de-

fined. Subsequent sections describe the previous methodologies developed to de-

termine the IDP in physiological and in failure cases. Finally, it will conclude with 

some main points the development of new IDP measurement techniques. 

2 The IDP importance for disc function evaluation and 

properties determination 

The internal disc pressure or intradiscal pressure (IDP) can be defined as the hy-

drostatic pressure presented by the NP of an healthy IVD 
3
. The IDP plays a key 

role on the IVD´s ability to withstand the physiological loads
24

, being an im-

portant parameter to understand the spinal on the disc degeneration. 

The IDP data has been essential for prevent the spinal complaints by forming a 

basis for clinical advice to promote the correct sitting postures
3
. The measure-

ments of IDP helps to clarify the effect of the external loads on the IVD behavior
3
 

and  to recognize the mechanism of IDP drop in disc degeneration. In addition, 

these data is the basis for physiotherapy and rehabilitation programs
29

. 

At a biomechanical point of view, the IDP is highly influenced by the axial spi-

nal load
18

. According to this, an increase on the compressive load applied to 

healthy discs is converted into IDP 
19

. Since the NP can be considered as incom-
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pressible, the AF bulges outward due to the stretch of annular 
26

, which, together 

with osmotic phenomenon, promotes a loss on both disc height and volume. 

The importance of IDP is reinforced due to difficult on the assessment of the 

disc strengthen properties. As example, a simple compressive overloading does 

not induce damage on the disc structure. Previous studies showed that before oc-

curring any disc disruption, the compressive overloading promotes the vertebral 

endplate damage and collapse
19

. These phenomena could be explained at a cellular 

level by the influence of the IDP on the chondroid tissues, characteristic of the 

IVD 
1
. On the one hand, the IDP or gradient pressures could induce the internal 

disruption on these tissues, causing a progressive structural failure typical on disc 

degeneration 
1
. On the other hand, the stresses and pressures oscillation also af-

fects the cell metabolism, where the IDP levels influences the matrix synthesis
1
. In 

sum, it is evident the need of an efficient method for measure the IDP, in order to 

better understand the mechanical behavior of IVD. 

3 On the IDP measurement: a methodology review 

The measurement of the IDP is a subject of intense research. Numerous authors 

have developed experimental methods to determine the relationship between the 

IDP and the disc mechanics: some authors were focused on the association be-

tween the IDP and the external load applied or posture adopted; others were more 

centered on the calculation of IDP value that leads to AF disruption. Next subsec-

tions will describe with more detail the studies performed under these subjects. 

 

3.1 Relationship between IDP and posture or exter-

nal loading 

 
Previous studies have investigated the relationship between an external loads 

applied or posture and IDP, on lumbar
5,9,11,12,18,21,29

 or on cervical
4,8,17

discs. 

The methodologies developed for measure the IDP were diverse (Table 1).  

Table 1. Previous studies reporting the IDP according to the type of load/posture adopted  

Author  Year  Transducer Type IDP evaluation Mean IDP(MPa) 

Lumbar spine 

Nachemson 1964/1965 Liquid-filled Relaxed standing 

Relaxed sitting 

0.70 

1.13 

Nachemson 

& Elfstrom 

1970 Piezoresistive Relaxed standing 

Relaxed sitting 

0.72 

1.00 

Schultz 1982 Piezoresistive 2400 N axial load 1.60 
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Sato 1999 Piezoresistive Relaxed standing 

Relaxed sitting 

0.53 

0.63 

Wilke 1999 Piezoresistive Relaxed standing 

Relaxed sitting 

Lifting a 20-kg weight 

with round flexed back 

0.50 

0.46 

 

2.30 

Heuer 2007 Laser scanning 500N axial load 0.49 

Dennison 2008 Fibre Gratings 800N axial load
1
 2.40 to 3.50 

Cervical spine 

Hattori 1981 Piezoresistive 53 N axial load 

75 N axial load 

100 N axial load 

155 N axial load 

0.31 

0.45 

0.59 

0.91 

Pospiech 1999 Piezoresistive Muscular inactivation 

- Flexion/Extension 

Muscular activation 

- Flexion/Extension 

 

0.23-0.32 

 

0.36-0.64 

Cripton 2001 Piezoresistive ~1000 N axial load  3.5 

 

The first approaches were performed on the 1960s and 1970s
12,13,16

 on in vivo 

situation, alerting for the importance of IDP on the spinal biomechanics
3
. A pres-

sure transducer using elastic polyethylene tubing threaded over the side near of a 

tip from hollow liquid-filled needle, connected with an electromanometer, was 

used in healthy discs for IDP determination. The data showed that a healthy NP 

could behave hydrostatically and the IDP is dependent on the posture. Even 

though the interesting findings, this pioneer approach presents a couple of limita-

tions. First, the polyethylene membrane does not present enough sensitivity for 

dynamic pressure measurements. Second, the fluid-filled needle is not prepared to 

bend more than 20º
12

. 

The evolution of the transducer technology and its increased accuracy leads to a 

decrease on the IDP measurement (a reduction of 25 and 33%)
3
, due to the re-

placement of liquid-filled sensors by the piezoresistive ones, as well as the set of 

calibration to body temperature rather than room temperature
3
.  

The initial approach using was developed by Nachemson & Elfstrom
11

, using a 

piezoresistive semiconductor strain gauge embebed in a rigid resin into a tip of a 

0.8 mm diameter transducer needle
3
.This sensor allows bending until 40º without 

affecting the IDP measurement
3
, increasing the IDP measurement accuracy. 

In early 80´s, Schultz et al.
22

 tried to validate a biomechanical model lumbar 

spine by monitoring IDP and myoelectric signals, using a piezoresistive transducer 

for IDP measurement. This study pointed to 1.6 MPa of mean IDP, for a compres-
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sive load as much as 2.4 kN. The main finding of this study was that overloading 

could be a promoter of low back disorders. 

In end of the 90s, two important studies were published: Sato et al. 
18

 developed 

a new approach using a piezoresistive sensor to determine the IDP in vivo young 

patients (25±2 y.o.). The innovative principle of this method is the sensor posi-

tioning: the sensing diaphragm was mounted laterally on the transducer needle 

(1.2-mm diameter); Wilke et al. 
29

, studied the IDP in vivo, in one volunteer per-

forming various daily life activities. To measure the IDP, a piezoelectric pressure 

transducer, with 1.5 mm diameter and 7 mm length, was implanted in the NP of a 

healthy L4–L5 disc. However, in this case, the IDP was record with a telemetrical-

ly, avoiding the problem of having a needle in situ. These studies reported similar 

IDP for standing position and reinforced the idea that in vivo IDP varied accord-

ing to the adopted position of the body and the compressive force applied. 

Although the accuracy of piezoelectric sensors, they are not able to characterize 

pressure profiles within disc
5
. With the advances on the sensor technology, new 

sensors were adapted for IDP measurement. Dennison et al.
5
 used small diameter 

(125 µm) fiber-bragg grating, which consist on an optical fiber with a Bragg grat-

ing inscribed into a fiber core. These sensors present a biocompatibility, mechani-

cal compliance and insusceptibility to electromagnetic interference. The results 

reported a linear response of disc pressure to compressive loads. 

The IVD bulging was also adopted as an indirect parameter of the internal stress 

measurement of the disc. Heuer et al.
9
 quantified the IDP ex vivo using a non-

contact laser scanning method, which measure a 3D contour. The test consists on 

the application of 15 min of a 500 N static compression. This work showed that 

these loads results on an IDP of 0.49 MPa (range: 0.36–0.53 MPa), decreasing lin-

early to 0.48 MPa (0.36–0.52 MPa) when discs were constantly compressed. 

In contrast to the extensive experimental work on lumbar IDP, the data related to 

cervical pressure is extremely scarce. The measurements on the cervical are chal-

lenging due to small size and anatomy of cervical IVDs. 

Hattori et al.
8
 was the first study recording the cervical IDP in vivo. A needle-

based pressure transducer was used to measure IDP, during common neck move-

ments. The results found no differences between cervical IVDs, detecting the val-

ues of 0.31MPa and 0.91MPa for 53N and 155N of axial load, respectively. 

Later, Pospiech et al.
17

 studied the IDP of cervical spine in vivo under simulated 

muscular forces in intact spines as well as in fused specimens. The IDP was meas-

ured using a pressure transducer mounted on a 1.3 mm-diameter needle. The re-

sults showed significant increase in IDP when the musculature was activated and a 

marked increase in IDP in both segments adjacent to fusion IVDs. 

Alhough the importance of these findings, the cervical IDP measurement pre-

sents more difficult, since they cervical annular fibers could disrupt with the nee-

dle-tip insertion, due to its rigidity and its large diameter (over 1mm) 
4
. To mini-

mizing the AF disruption and reduce the distortion of the IDP signals or specimen 

kinematic behavior, Cripton et al.
4
 tested ex vivo the cervical IDP response to ex-

ternal loads, using with a 0.26 mm diameter flexible electric wires passing through 
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AF. They found a maximum of 3.5MPa for cervical IDP, with 1000N load, while 

in lumbar for the same load, it is common an IDP of 1MPa. 

 3.2 The annular failure strength due to inflation 

method pressurization 

Despite the panoply of mechanical testing found on literature intending to eluci-

date the contribution of loads to annular tear or disruption, the effect of the IDP 

fluctuation on the AF injury remains largely unknown. The measurement of the 

IDP value that leads to AF disruption is a subject of extreme interest, not only to 

understand the mechanisms of IVD failure but also for IVD replacement design-

ing, since it should withstand the daily routine activities without collapsing. 

Some studies determined the maximum value of IDP that annular fibers support 

before failure
10,19,27

.  The table 2 reports the failure IDP in previous studies. 

Table 2. Previous studies reporting failure pressure data several IVD models. 

Author Year  Models Mean failure pressure (MPa) 

Schetchman 2006 Lumbar bovine 18 ± 3  

Veres 2010 Lumbar ovine 14.1 ± 3.9  

Menkowitz 2005 Cervical human spine  0.28 (min-máx:0.1-1.18)  

 

Schechtman et al. (2005) investigated the intrinsic failure strength of the intact 

bovine caudal disc under a simple mode of inflation, using a hydraulic actuator. 

They injected a colored hydrogel, under monitored pressure, into the NP. It was 

found a mean hydrostatic failure pressure of 18±3MPa. This method allowed un-

derstanding the alterations of the intrinsic disc strength associated with prior load-

ing history or degeneration. However, it does not give information about the mi-

crostructural behavior of inner annular fibers after the inflation. 

Later, Veres et al.
27

 used the same technique performed by Schechtman et al. 

(2005) to investigate the role of high IDP on annular fibers disruption in ovine 

lumbar IVDs. This team included the analysis of the AF damage after pressure in-

sertion by a microstructural investigation. The main findings showed that posterior 

annular region is more susceptible to disruption than the other disc regions, due to 

its inability to distribute hydrostatic pressures circumferentially. 

In terms of cervical spine, Menkowitz et al. 
10

 documented a mean intradiscal 

rupture pressure of 0.28 MPa (range 0.1-1.18 MPa), using a 25G needle for the in-

sertion of an contrast dye with IDP monitoring during time. This study showed 

that in cervical spine the injury could be induced at lower pressures. 
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4 The criteria for a new method for intradiscal 

measurement 

All these methodologies helps to generate valuable data, useful for a pre-

clinically evaluation of disc injuries. However, some difficulties are noticed on the 

experimental determination of IDP: the direct measurements of IDP through in vi-

vo studies are normally avoided since the insertion of a transducer into the IVD 

could damage it
29

. Therefore, the technique for in vivo IDP measurement should 

be non-invasive, since the IDP must be determined without disc disruption. This is 

essential for in vivo human tests, since the discs should keep its complete func-

tions after the IDP monitoring. New techniques must be also accurate, as the IDP 

magnitude is low and highly sensitive to movements or load application. 

In terms of annular failure strength, more studies should be performed to fully 

understand the rupture mechanism. Previous studies did not follow-up how the 

failure occurs: they only assessed the IVD structure after the rupture. Therefore, it 

is desirable an approach that assesses the disc behavior during the inflation. 

A promising method for both in vivo IDP monitoring and the disc inflation fol-

low-up is the use of imaging resources. With the advance of imaging techniques, 

the assessment of inner IVD pressure is possible, representing a non-invasive ap-

proach that could be better explored. In addition, coupling a inflation method with 

a microstructural assessment real time could bring a new light on poorly under-

stood mechanism of IVD failure related to higher IDP values.  

New techniques must also allowing the measurement of IDP on different types 

of materials inside the IVD, with potential to replace NP, in order to find a materi-

al which could has the similar hydrostatic response as NP. 

To conclude, notwithstanding the great efforts performed in past for experi-

mental IDP measurement, new approaches and techniques are needed in order to 

better understand the IDP influence on disc behavior. 
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