819 research outputs found

    The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Get PDF
    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis

    Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans

    Get PDF
    Background: Common genetic variation at genes that are imprinted and exclusively maternally expressed could explain the apparent maternal-specific inheritance of low birthweight reported in large family pedigrees. We identified ten single nucleotide polymorphisms ( SNPs) in H19, and we genotyped three of these SNPs in families from the contemporary ALSPAC UK birth cohort ( 1,696 children, 822 mothers and 661 fathers) in order to explore associations with size at birth and cord blood IGF- II levels. Results: Both offspring's and mother's H19 2992C> T SNP genotypes showed associations with offspring birthweight ( P = 0.03 to P = 0.003) and mother's genotype was also associated with cord blood IGF-II levels ( P = 0.0003 to P = 0.0001). The offspring genotype association with birthweight was independent of mother's genotype ( P = 0.01 to P = 0.007). However, mother's untransmitted H19 2992T allele was also associated with larger birthweight ( P = 0.04) and higher cord blood IGF-II levels ( P = 0.002), suggesting a direct effect of mother's genotype on placental IGF-II expression and fetal growth. The association between mother's untransmitted allele and cord blood IGF-II levels was more apparent in offspring of first pregnancies than subsequent pregnancies ( P-interaction = 0.03). Study of the independent Cambridge birth cohort with available DNA in mothers (N = 646) provided additional support for mother's H19 2992 genotype associations with birthweight ( P = 0.04) and with mother's glucose levels ( P = 0.01) in first pregnancies. Conclusion: The common H19 2992T allele, in the mother or offspring or both, may confer reduced fetal growth restraint, as indicated by associations with larger offspring birth size, higher cord blood IGF-II levels, and lower compensatory early postnatal catch-up weight gain, that are more evident among mother's smaller first-born infants

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Effects of a museum-based social-prescription intervention on quantitative measures of psychological wellbeing in older adults

    Get PDF
    Aims: To assess psychological wellbeing in a novel social prescription intervention for older adults called Museums on Prescription, and to explore the extent of change over time in six self-rated emotions (β€˜absorbed, β€˜active’, β€˜cheerful’, β€˜encouraged’, β€˜enlightened’ and β€˜inspired’). Methods: Participants (n=115) aged 65-94 were referred to museum-based programmes comprising 10, weekly sessions, by healthcare and third sector organisations using inclusion criteria (e.g. socially isolated; able to give informed consent; not in employment; not regularly attending social or cultural activities) and exclusion criteria (e.g. unable to travel to the museum; unable to function in a group situation; unlikely to be able to attend all sessions; unable to take part in interviews and complete questionnaires). In a within-participants design, the Museum Wellbeing Measure for Older Adults (MWM-OA) was administered pre-post session at start- mid- and end-programme. Twelve programmes, facilitated by museum staff and volunteers, were conducted in seven museums in central London and across Kent. In addition to the quantitative measures, participants, carers where present, museum staff and researchers kept weekly diaries following guideline questions, and took part in end programme in-depth interviews. Results: Multivariate analyses of variance showed significant participant improvements in all six MWM-OA emotions, pre-post session at start- mid- and end-programme. Two emotions, β€˜absorbed’ and β€˜enlightened’, increased pre-post session disproportionately to the others; β€˜cheerful’ attained the highest pre-post session scores whereas β€˜active’ was consistently lowest. Conclusions: Museums can be instrumental in offering museum-based programmes for older adults to improve psychological wellbeing over time. Participants in the study experienced a sense of privilege, valued the opportunity to liaise with curators, visit parts of the museum closed to the public, and handle objects normally behind glass. Participants appreciated opportunities afforded by creative and co-productive activities to acquire learning and skills, and get to know new people in a different context

    UK experience of liver transplantation for erythropoietic protoporphyria

    Get PDF
    Erythropoietic protoporphyria (EPP) is characterised by excess production of free protoporphyrin from the bone marrow, most commonly due to deficiency of the enzyme ferrochelatase. Excess protoporphyrin gives rise to the cutaneous photosensitivity characteristic of the disease, and in a minority of patients leads to end-stage liver disease necessitating liver transplantation (LT). There is limited information regarding the timing, impact and long-term outcome of LT in such patients, thus we aimed to identify the indications and outcomes of all transplants performed for EPP in the UK using data from the UK Transplant Registry. Between 1987 and 2009, five patients underwent LT for EPP liver disease. Median follow-up was 60 months, and there were two deaths at 44 and 95 months from causes unrelated to liver disease. The remaining recipients are alive at 22.4 years, 61 months and 55 months after transplant. A high rate of postoperative biliary stricturing requiring multiple biliary interventions was observed. Recurrent EPP-liver disease occurred in 4/5 (80%) of patients but graft failure has not been observed. Given the role of biliary obstruction in inducing EPP-mediated liver damage, we suggest that consideration should be given for construction of a Roux loop at the time of transplant. Thus we demonstrate that although EPP liver transplant recipients have a good long-term survival, comparable to patients undergoing LT for other indications, biliary complications and disease recurrence are almost universal, and bone marrow transplantation should be considered where possible

    The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster

    Get PDF
    The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity

    Randomised controlled trial of mammographic screening in women from age 40: predicted mortality based on surrogate outcome measures

    Get PDF
    A trial in the UK to study the effect on mortality from breast cancer of invitation for annual mammography from the age of 40–41, has randomised a total of 160 921 women in the ratio 1 : 2 to the intervention and control arms. All breast cancers diagnosed in the two arms have been identified, and the histology reviewed. This paper presents the results of an interim analysis using surrogate outcome measures to compare predicted breast cancer mortality in the two arms based on 1287 cases diagnosed to 31.12.1999. Due to earlier diagnosis, there is currently an 8% excess of invasive breast cancers in the intervention arm. The ratio of predicted deaths at 10 years in the intervention arm relative to the control arm, adjusted for this excess diagnosis, ranges from 0.89 (95% confidence interval (CI) 0.78–1.01) to 0.90 (95% CI 0.80–1.01). Screening from age 40 may result in a lower reduction in breast cancer mortality than that observed in other trials including women below age 50. This analysis based on surrogate outcome measures suggests that a reduction in breast cancer mortality may be observed in this trial. However, a number of assumptions have been necessary and firm conclusions must await the analysis of observed mortality from breast cancer

    The Ruegeria pomeroyi acuI Gene Has a Role in DMSP Catabolism and Resembles yhdH of E. coli and Other Bacteria in Conferring Resistance to Acrylate

    Get PDF
    The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdHβˆ’ mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdHβˆ’ mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide β€œadded protection” for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway

    Combinatorial Polymer Electrospun Matrices Promote Physiologically-Relevant Cardiomyogenic Stem Cell Differentiation

    Get PDF
    Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs) towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG), hydrophobic poly(Ξ΅-caprolactone) (PCL), and negatively-charged, carboxylated PCL (CPCL). Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS), Ξ±-myosin heavy chain expression (Ξ±-MHC), and intracellular Ca2+ signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest Ξ±-MHC expression as well as the most mature Ca2+ signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance Ξ±-MHC gene expression, and promote maturation of myocyte Ca2+ handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques
    • …
    corecore