150 research outputs found

    Identification of the rumination in cattle using support vector machines with motion-sensitive bolus sensors

    Get PDF
    The reticuloruminal function is central to the digestive efficiency in ruminants. For cattle, collar- and ear tag-based accelerometer monitors have been developed to assess the time spent ruminating on an individual animal. Cattle that are ill feed less and so ruminate less, thus, the estimation of the time spent ruminating provides insights into the health of individual animals. pH boluses directly provide information on the reticuloruminal function within the rumen and extended (three hours or more) periods during which the ruminal pH value remains below 5.6 is an indicator that dysfunction and poor welfare are likely. Accelerometers, incorporated into the pH boluses, have been used to indicate changes in behaviour patterns (high/low activity), utilised to detect the onset of oestrus. The paper demonstrates for the first time that by processing the reticuloruminal motion, it is possible to recover rumination periods. Reticuloruminal motion energy and the time between reticuloruminal contractions are used as inputs to a Support Vector Machine (SVM) to identify rumination periods with an overall accuracy of 86.1%, corroborated by neck mounted rumination collars

    Rapid Evolution in the Most Luminous Galaxies During the First 900 Million Years

    Full text link
    The first 900 million years (Myr) to redshift z~6 (the first seven per cent of the age of the Universe) remains largely unexplored for the formation of galaxies. Large samples of galaxies have been found at z~6, but detections at earlier times are uncertain and unreliable. It is not at all clear how galaxies built up from the first stars when the Universe was ~300 Myr old (z~12-15) to z~6, just 600 Myr later. Here we report the results of a search for galaxies at z~7-8, about 700 Myr after the Big Bang, using the deepest near-infrared and optical images ever taken. Under conservative selection criteria we find only one candidate galaxy at z~7-8, where ten would be expected if there were no evolution in the galaxy population between z~7-8 and z~6. Using less conservative criteria, there are four candidates, where 17 would be expected with no evolution. This demonstrates that very luminous galaxies are quite rare 700 Myr after the Big Bang. The simplest explanation is that the Universe is just too young to have built up many luminous galaxies at z~7-8 by the hierarchical merging of small galaxies.Comment: Accepted for publication in Nature, 20 pages, 5 figures, 2 tables (includes Supplementary Information), replaced to match version in pres

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-

    Collapse risk and residual drift performance of steel buildings using post-tensioned MRFs and viscous dampers in near-fault regions

    Get PDF
    The potential of post-tensioned self-centering moment-resisting frames (SC-MRFs) and viscous dampers to reduce the collapse risk and improve the residual drift performance of steel buildings in near-fault regions is evaluated. For this purpose, a prototype steel building is designed using different seismic-resistant frames, i.e.: moment-resisting frames (MRFs); MRFs with viscous dampers; SC-MRFs; and SC-MRFs with viscous dampers. The frames are modeled in OpenSees where material and geometrical nonlinearities are taken into account as well as stiffness and strength deterioration. A database of 91 near-fault, pulse-like ground motions with varying pulse periods is used to conduct incremental dynamic analysis (IDA), in which each ground motion is scaled until collapse occurs. The probability of collapse and the probability of exceeding different residual story drift threshold values are calculated as a function of the ground motion intensity and the period of the velocity pulse. The results of IDA are then combined with probabilistic seismic hazard analysis models that account for near-fault directivity to assess and compare the collapse risk and the residual drift performance of the frames. The paper highlights the benefit of combining the post-tensioning and supplemental viscous damping technologies in the near-source. In particular, the SC-MRF with viscous dampers is found to achieve significant reductions in collapse risk and probability of exceedance of residual story drift threshold values compared to the MRF. © 2016 Springer Science+Business Media Dordrech

    How Do Galaxies Get Their Gas?

    Get PDF
    Not the way one might have thought. In hydrodynamic simulations of galaxy formation, some gas follows the traditionally envisioned route, shock heating to the halo virial temperature before cooling to the much lower temperature of the neutral ISM. But most gas enters galaxies without ever heating close to the virial temperature, gaining thermal energy from weak shocks and adiabatic compression, and radiating it just as quickly. This ``cold mode'' accretion is channeled along filaments, while the conventional, ``hot mode'' accretion is quasi-spherical. Cold mode accretion dominates high redshift growth by a substantial factor, while at z<1 the overall accretion rate declines and hot mode accretion has greater relative importance. The decline of the cosmic star formation rate at low z is driven largely by geometry, as the typical cross section of filaments begins to exceed that of the galaxies at their intersections.Comment: 7 pages, 1 figure. To be published in the proceedings of the IGM/Galaxy Connection- The Distribution of Baryons at z=0 conferenc

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Understanding Galaxy Formation and Evolution

    Get PDF
    The old dream of integrating into one the study of micro and macrocosmos is now a reality. Cosmology, astrophysics, and particle physics intersect in a scenario (but still not a theory) of cosmic structure formation and evolution called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to explain the origin of galaxies. In these lecture notes, I first present a review of the main galaxy properties, highlighting the questions that any theory of galaxy formation should explain. Then, the cosmological framework and the main aspects of primordial perturbation generation and evolution are pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation, presenting a review on LCDM halo assembling and properties, and on the main candidates for non-baryonic dark matter. It is shown how the nature of elemental particles can influence on the features of galaxies and their systems. Finally, the complex processes of baryon dissipation inside the non-linearly evolving CDM halos, formation of disks and spheroids, and transformation of gas into stars are briefly described, remarking on the possibility of a few driving factors and parameters able to explain the main body of galaxy properties. A summary and a discussion of some of the issues and open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf). Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005 (submitted to the Editors on March 15, 2006

    Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.

    Get PDF
    International audienceSHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders

    Bayesian analysis of cosmic structures

    Full text link
    We revise the Bayesian inference steps required to analyse the cosmological large-scale structure. Here we make special emphasis in the complications which arise due to the non-Gaussian character of the galaxy and matter distribution. In particular we investigate the advantages and limitations of the Poisson-lognormal model and discuss how to extend this work. With the lognormal prior using the Hamiltonian sampling technique and on scales of about 4 h^{-1} Mpc we find that the over-dense regions are excellent reconstructed, however, under-dense regions (void statistics) are quantitatively poorly recovered. Contrary to the maximum a posteriori (MAP) solution which was shown to over-estimate the density in the under-dense regions we obtain lower densities than in N-body simulations. This is due to the fact that the MAP solution is conservative whereas the full posterior yields samples which are consistent with the prior statistics. The lognormal prior is not able to capture the full non-linear regime at scales below ~ 10 h^{-1} Mpc for which higher order correlations would be required to describe the matter statistics. However, we confirm as it was recently shown in the context of Ly-alpha forest tomography that the Poisson-lognormal model provides the correct two-point statistics (or power-spectrum).Comment: 11 pages, 1 figure, report for the Astrostatistics and Data Mining workshop, La Palma, Spain, 30 May - 3 June 2011, to appear in Springer Series on Astrostatistic
    corecore