43 research outputs found

    Colon cancer associated genes exhibit signatures of positive selection at functionally significant positions

    Get PDF
    Background Cancer, much like most human disease, is routinely studied by utilizing model organisms. Of these model organisms, mice are often dominant. However, our assumptions of functional equivalence fail to consider the opportunity for divergence conferred by ~180 Million Years (MY) of independent evolution between these species. For a given set of human disease related genes, it is therefore important to determine if functional equivalency has been retained between species. In this study we test the hypothesis that cancer associated genes have different patterns of substitution akin to adaptive evolution in different mammal lineages. Results Our analysis of the current literature and colon cancer databases identified 22 genes exhibiting colon cancer associated germline mutations. We identified orthologs for these 22 genes across a set of high coverage (>6X) vertebrate genomes. Analysis of these orthologous datasets revealed significant levels of positive selection. Evidence of lineage-specific positive selection was identified in 14 genes in both ancestral and extant lineages. Lineage-specific positive selection was detected in the ancestral Euarchontoglires and Hominidae lineages for STK11, in the ancestral primate lineage for CDH1, in the ancestral Murinae lineage for both SDHC and MSH6 genes and the ancestral Muridae lineage for TSC1. Conclusion Identifying positive selection in the Primate, Hominidae, Muridae and Murinae lineages suggests an ancestral functional shift in these genes between the rodent and primate lineages. Analyses such as this, combining evolutionary theory and predictions - along with medically relevant data, can thus provide us with important clues for modeling human diseases

    HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: Recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation

    Get PDF
    During the past decade, catheter ablation of atrial fibrillation (AF) has evolved rapidly from a highly experimental unproven procedure, to its current status as a commonly performed ablation procedure in many major hospitals throughout the world. Surgical ablation of AF, using either standard or minimally invasive techniques, is also performed in many major hospitals throughout the world. The purpose of this Consensus Statement is to provide a state-of-the-art review of the field of catheter and surgical ablation of AF, and to report the findings of a Task Force, convened by the Heart Rhythm Society and charged with defining the indications, techniques, and outcomes of this procedure. The Heart Rhythm Society was pleased to develop this Consensus Statement in partnership with the European Heart Rhythm Association and the European Cardiac Arrhythmia Society. This statement summarizes the opinion of the Task Force members based on their own experience in treating patients, as well as a review of the literature, and is directed to all health care professionals who are involved in the care of patients with AF, particularly those who are undergoing or are being considered for catheter or surgical ablation procedures for AF. This statement is not intended to recommend or promote catheter ablation of AF. Rather the ultimate judgment regarding care of a particular patient must be made by the health care provider and patient in light of all the circumstances presented by that patient. In writing a "consensus" document, it is recognized that consensus does not mean that there was complete agreement among all Task Force members. We attempted to identify those aspects of AF ablation for which a true "consensus" could be identified ( Tables 1 and 2 ). Surveys of the entire Task Force were used to identify these areas of consensus. The main objective of this document is

    HIV Reservoirs and Immune Surveillance Evasion Cause the Failure of Structured Treatment Interruptions: A Computational Study

    Get PDF
    Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models

    Using a human cardiovascular-respiratory model to characterize cardiac tamponade and pulsus paradoxus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac tamponade is a condition whereby fluid accumulation in the pericardial sac surrounding the heart causes elevation and equilibration of pericardial and cardiac chamber pressures, reduced cardiac output, changes in hemodynamics, partial chamber collapse, pulsus paradoxus, and arterio-venous acid-base disparity. Our large-scale model of the human cardiovascular-respiratory system (H-CRS) is employed to study mechanisms underlying cardiac tamponade and pulsus paradoxus. The model integrates hemodynamics, whole-body gas exchange, and autonomic nervous system control to simulate pressure, volume, and blood flow.</p> <p>Methods</p> <p>We integrate a new pericardial model into our previously developed H-CRS model based on a fit to patient pressure data. Virtual experiments are designed to simulate pericardial effusion and study mechanisms of pulsus paradoxus, focusing particularly on the role of the interventricular septum. Model differential equations programmed in C are solved using a 5<sup>th</sup>-order Runge-Kutta numerical integration scheme. MATLAB is employed for waveform analysis.</p> <p>Results</p> <p>The H-CRS model simulates hemodynamic and respiratory changes associated with tamponade clinically. Our model predicts effects of effusion-generated pericardial constraint on chamber and septal mechanics, such as altered right atrial filling, delayed leftward septal motion, and prolonged left ventricular pre-ejection period, causing atrioventricular interaction and ventricular desynchronization. We demonstrate pericardial constraint to markedly accentuate normal ventricular interactions associated with respiratory effort, which we show to be the distinct mechanisms of pulsus paradoxus, namely, series and parallel ventricular interaction. Series ventricular interaction represents respiratory variation in right ventricular stroke volume carried over to the left ventricle via the pulmonary vasculature, whereas parallel interaction (via the septum and pericardium) is a result of competition for fixed filling space. We find that simulating active septal contraction is important in modeling ventricular interaction. The model predicts increased arterio-venous CO<sub>2 </sub>due to hypoperfusion, and we explore implications of respiratory pattern in tamponade.</p> <p>Conclusion</p> <p>Our modeling study of cardiac tamponade dissects the roles played by septal motion, atrioventricular and right-left ventricular interactions, pulmonary blood pooling, and the depth of respiration. The study fully describes the physiological basis of pulsus paradoxus. Our detailed analysis provides biophysically-based insights helpful for future experimental and clinical study of cardiac tamponade and related pericardial diseases.</p

    Influence of Caloric Restriction on Constitutive Expression of NF-κB in an Experimental Mouse Astrocytoma

    Get PDF
    Many of the current standard therapies employed for the management of primary malignant brain cancers are largely viewed as palliative, ultimately because these conventional strategies have been shown, in many instances, to decrease patient quality of life while only offering a modest increase in the length of survival. We propose that caloric restriction (CR) is an alternative metabolic therapy for brain cancer management that will not only improve survival but also reduce the morbidity associated with disease. Although we have shown that CR manages tumor growth and improves survival through multiple molecular and biochemical mechanisms, little information is known about the role that CR plays in modulating inflammation in brain tumor tissue.Phosphorylation and activation of nuclear factor κB (NF-κB) results in the transactivation of many genes including those encoding cycloxygenase-2 (COX-2) and allograft inflammatory factor-1 (AIF-1), both of which are proteins that are primarily expressed by inflammatory and malignant cancer cells. COX-2 has been shown to enhance inflammation and promote tumor cell survival in both in vitro and in vivo studies. In the current report, we demonstrate that the p65 subunit of NF-κB was expressed constitutively in the CT-2A tumor compared with contra-lateral normal brain tissue, and we also show that CR reduces (i) the phosphorylation and degree of transcriptional activation of the NF-κB-dependent genes COX-2 and AIF-1 in tumor tissue, as well as (ii) the expression of proinflammatory markers lying downstream of NF-κB in the CT-2A malignant mouse astrocytoma, [e.g. macrophage inflammatory protein-2 (MIP-2)]. On the whole, our date indicate that the NF-κB inflammatory pathway is constitutively activated in the CT-2A astrocytoma and that CR targets this pathway and inflammation.CR could be effective in reducing malignant brain tumor growth in part by inhibiting inflammation in the primary brain tumor

    AIDS in Ireland: the reporting delay distribution and the implementation of integral equation models.

    No full text
    This paper deals with two aspects concerning the modelling of AIDS incidence using Irish data. It includes a description of the adjustment of the number of AIDS cases to allow for reporting delays; and considers the accessibility of numerical solution of the integral equation models generated by the back-projection method for the adjusted AIDS cases. Includes a summary of the Irish data

    Religion and British Sociology: The Power and Necessity of the Spiritual

    No full text
    Understanding the role of religion in early British sociology, as well as its fate in later sociology, requires a variety of perspectives: one is intellectual and concerns the various forms that the topic of religion took for British sociology. Another is organisational and ecological. British sociology as embodied in the Sociological Society was a part of a vast array of organisations that were part of a massive movement of social reform, international in scope, and motivated largely by the newly ‘social’ Christianity of the late Victorian era. As a kind of public discourse, sociology was part of what Maurice Cowling called the ‘Public Doctrine’ replacing religion (1980). As Cowling demonstrates for British intellectual life as a whole, the withdrawing roar of the sea of faith, as Matthew Arnold put it (1867), was in the ears of generations of British academics and thinkers, and especially in those who used the term ‘sociology’ or referred to sociological thinkers, such as Comte, or their precursors
    corecore