31 research outputs found

    ATPase Subdomain IA Is a Mediator of Interdomain Allostery in Hsp70 Molecular Chaperones

    Get PDF
    The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the β-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions. © 2014 General et al

    The proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK

    Full text link
    Bac7, a cathelicidin peptide of the proline-rich group, inactivates bacteria in a stereospecific manner by entering target cells without any apparent membrane damage and by binding to as yet unknown intracellular targets. The present study was aimed at detecting these putative intracellular interactors, which might mediate the antibacterial action of this peptide. By using affinity resins functionalized with the N-terminal 1-35 fragment of Bac7, a single protein was specifically retained with high affinity from Escherichia coli cytoplasmic protein lysates. This ligand was identified as the heat shock protein DnaK, the Hsp70 homolog in E. coli. The interaction between the peptide and the chaperone is stereospecific, given that a resin prepared with the all-d enantiomer failed to retain the protein. In vitro, Bac7(1-35) formed a complex with DnaK with an affinity comparable to that of other known high-affinity peptide ligands. In addition, at 10-100 μM concentration, the peptide inhibited the protein refolding activity of the complete DnaK/DnaJ/GrpE/ATP molecular chaperone system in a dose-dependent manner. Despite these results, the in vitro sensitivity to the peptide, under growth permitting conditions, of DnaK-deficient E. coli strains was not significantly affected compared to the wild-type strain. This suggests that, apart from DnaK, other vital targets for the proline-rich AMPs are present in susceptible bacteria

    The influence of pressure on the structure and dynamics of hydrogen bonds in zoisite and clinozoisite

    Get PDF
    Density functional theory calculations have been used to study the pressure-induced changes of the hydrogen bond of Fe-free orthozoisite and clinozoisite and the concomitant shifts of the OH-stretching frequencies. Two independent parameter-free lattice dynamical calculations have been employed. One was based on a planewave basis set in conjunction with norm-conserving pseudopotentials and a density functional perturbation theory approach, while the other used a localised basis set and a finite displacement algorithm for the lattice dynamical calculations. Both models confirm the unusually large pressure-induced red-shift found experimentally ( 33.89 cm 1/GPa) in orthozoisite, while the pressureinduced shifts in clinozoisite are much smaller ( 5 to 9 cm 1/GPa). The atomistic model calculations show that in orthozoisite the nearly linear O H_O arrangement is compressed by about 8% on a pressure increase to 10 GPa,while concomitantly the O H distance is significantly elongated (by 2.5% at 10 GPa). In clinozoisite, the O H_O arrangement is kinked \OHO 166 at ambient conditions and remains kinked at high pressures, while the O-H distance is elongated by only 0.5% at10 GPa. The current calculations confirm that correlations between the distances and dynamics of hydrogen bonds, which have been established at ambient conditions, cannotbe used to infer hydrogen positions at high pressures
    corecore