551 research outputs found

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five β€œimportant” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ξ¨predawn < βˆ’2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Improved detection of Pneumocystis jirovecii in upper and lower respiratory tract specimens from children with suspected pneumocystis pneumonia using real-time PCR: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pneumocystis </it>pneumonia (PCP) is a major cause of hospitalization and mortality in HIV-infected African children. Microbiologic diagnosis relies predominantly on silver or immunofluorescent staining of a lower respiratory tract (LRT) specimens which are difficult to obtain in children. Diagnosis on upper respiratory tract (URT) specimens using PCR has been reported useful in adults, but data in children are limited. The main objectives of the study was (1) to compare the diagnostic yield of PCR with immunofluorescence (IF) and (2) to investigate the usefulness of upper compared to lower respiratory tract samples for diagnosing PCP in children.</p> <p>Methods</p> <p>Children hospitalised at an academic hospital with suspected PCP were prospectively enrolled. An upper respiratory sample (nasopharyngeal aspirate, NPA) and a lower respiratory sample (induced sputum, IS or bronchoalveolar lavage, BAL) were submitted for real-time PCR and direct IF for the detection of <it>Pneumocystis </it><it>jirovecii</it>. A control group of children with viral lower respiratory tract infections were investigated with PCR for PCP.</p> <p>Results</p> <p>202 children (median age 3.3 [inter-quartile range, IQR 2.2 - 4.6] months) were enrolled. The overall detection rate by PCR was higher than by IF [180/349 (52%) vs. 26/349 (7%) respectively; p < 0.0001]. PCR detected more infections compared to IF in lower respiratory tract samples [93/166 (56%) vs. 22/166 (13%); p < 0.0001] and in NPAs [87/183 (48%) vs. 4/183 (2%); p < 0.0001]. Detection rates by PCR on upper (87/183; 48%) compared with lower respiratory tract samples (93/166; 56%) were similar (OR, 0.71; 95% CI, 0.46 - 1.11). Only 2/30 (6.6%) controls were PCR positive.</p> <p>Conclusion</p> <p>Real-time PCR is more sensitive than IF for the detection of <it>P. jirovecii </it>in children with PCP. NPA samples may be used for diagnostic purposes when PCR is utilised. Wider implementation of PCR on NPA samples is warranted for diagnosing PCP in children.</p

    Estrogen receptor-Ξ± polymorphism in a Taiwanese clinical breast cancer population: a case–control study

    Get PDF
    INTRODUCTION: Receptor-mediated estrogen activation participates in the development and progression of breast cancer. Estrogen receptor (ER)-Ξ± polymorphism has been found to be associated with breast cancer and clinical features of the disease in Caucasians. Epidemiologic studies have revealed that age–incidence patterns of breast cancer in Asians differ from those in Caucasians. Genomic data for ER-Ξ± in either population is therefore of value in the clinical setting for that ethnic group. METHODS: A case–control study was conducted to establish a database of ER-Ξ± polymorphisms in a Taiwanese population in order to compare Western and Taiwanese (Asian) distributions and to evaluate ER-Ξ± polymorphism as an indicator of clinical outcome. The ER-Ξ± gene was scanned in a Taiwanese clinical breast cancer group (189 patients) and in healthy individuals (177 healthy control individuals). PCR single-strand conformation polymorphism technology was employed and real-time PCR melting curve analysis was performed. RESULTS: Three sites of silent single nucleotide polymorphism (SNPs) were found, as reported previously in Western studies, but at significantly different frequencies. Among the three SNPs, the frequency of allele 1 (TCT β†’ TCC) in codon 10 was significantly lower in breast cancer patients (32.0%) than in control individuals (40.4%; P = 0.018). We found that allele 1 (ACG β†’ ACA) in codon 594 was less common in breast cancer patients with a family history of breast cancer (5.9%) than in those without such a history (19.6%; P = 0.049). Individually, both allele 1 in codon 325 (CCC β†’ CCG) and allele 1 in codon 594 exhibited a reverse association with the occurrence of lymph node metastasis. Furthermore, incorporation of both SNP markers further increased predictive accuracy. CONCLUSIONS: Our data suggest that ER-Ξ± polymorphisms are correlated with various aspects of breast cancer in Taiwan. ER-Ξ± genotype, as determined during presurgical evaluation, might represent a surrogate marker for predicting breast cancer lymph node metastasis

    Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target

    Get PDF
    BACKGROUND:Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD) in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS:Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14)C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14)C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD). These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE:Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD

    Using an Uncertainty-Coding Matrix in Bayesian Regression Models for Haplotype-Specific Risk Detection in Family Association Studies

    Get PDF
    Haplotype association studies based on family genotype data can provide more biological information than single marker association studies. Difficulties arise, however, in the inference of haplotype phase determination and in haplotype transmission/non-transmission status. Incorporation of the uncertainty associated with haplotype inference into regression models requires special care. This task can get even more complicated when the genetic region contains a large number of haplotypes. To avoid the curse of dimensionality, we employ a clustering algorithm based on the evolutionary relationship among haplotypes and retain for regression analysis only the ancestral core haplotypes identified by it. To integrate the three sources of variation, phase ambiguity, transmission status and ancestral uncertainty, we propose an uncertainty-coding matrix which combines these three types of variability simultaneously. Next we evaluate haplotype risk with the use of such a matrix in a Bayesian conditional logistic regression model. Simulation studies and one application, a schizophrenia multiplex family study, are presented and the results are compared with those from other family based analysis tools such as FBAT. Our proposed method (Bayesian regression using uncertainty-coding matrix, BRUCM) is shown to perform better and the implementation in R is freely available
    • …
    corecore