93 research outputs found

    Las Oolitas terruginosas del Jurásico de la sierra de Espuña (prov. de Murcia)

    Get PDF
    Se describe un corte situado en el Morrón de Alhama que abarca desde el Pliensbachense hasta el Jurásico medio, así como la fauna de Ammonites hallada en el mismo. Encima del Pliensbachense superior sigue el Toarcense inferior, condensado y recubierto por oolitas ferruginosas de hasta 5 m de potencia, que fueron ya dadas a conocer por P. FALLOT y otros autores. Encima siguen calizas bioclásticas potentes. Las oolitas ferruginosas contienen en su base un horizonte de condensación con una rica fauna de Ammonites dd Toarcense superior. Si fuera una fauna no condensada entonces permitiría la correlación con las sucesiones de zonas tanto la europea norteoccidental como la grecoitaliana. Aunque N. y Y. PEYRE (1960) describieron un horizonte de condensación rico en fósiles que representa correctamente el Pliensbachense superior (= Domerense) que fue hallado salo a 2,5 km de distancia, se admite que ambas oolitas ferruginosos corresponden más o menos al mismo nivel guía, concretamente equivalente a las "oolitas inferiores del límite" (Toarcense superior-Adenense), tanto de la Cordillera Ibérica, como de la "Costra limonítica inferior" (Toarcense superior-Bajocense inferior) de la zona subbética

    Performance of the final Event Builder for the ATLAS Experiment

    Get PDF
    Event data from proton-proton collisions at the LHC will be selected by the ATLAS experiment in a three level trigger system, which reduces the initial bunch crossing rate of 40 MHz at its first two trigger levels (LVL1+LVL2) to ~3 kHz. At this rate the Event-Builder collects the data from all Read-Out system PCs (ROSs) and provides fully assembled events to the the Event-Filter (EF), which is the third level trigger, to achieve a further rate reduction to ~200 Hz for permanent storage. The Event-Builder is based on a farm of O(100) PCs, interconnected via Gigabit Ethernet to O(150) ROSs. These PCs run Linux and multi-threaded software applications implemented in C++. All the ROSs and one third of the Event-Builder PCs are already installed and commissioned. We report on performance tests on this initial system, which show promising results to reach the final data throughput required for the ATLAS experiment

    ATLAS DataFlow: the read-out subsystem, results from trigger and data-acquisition system testbed studies and from modeling

    Full text link
    In the ATLAS experiment at the LHC, the output of readout hardware specific to each subdetector will be transmitted to buffers, located on custom made PCI cards ("ROBINs"). The data consist of fragments of events accepted by the first-level trigger at a maximum rate of 100 kHz. Groups of four ROBINs will be hosted in about 150 Read-Out Subsystem (ROS) PCs. Event data are forwarded on request via Gigabit Ethernet links and switches to the second-level trigger or to the Event builder. In this paper a discussion of the functionality and real-time properties of the ROS is combined with a presentation of measurement and modelling results for a testbed with a size of about 20% of the final DAQ system. Experimental results on strategies for optimizing the system performance, such as utilization of different network architectures and network transfer protocols, are presented for the testbed, together with extrapolations to the full system. ©2005 IEEE

    Drons col·laboratius

    Get PDF
    La robòtica col·laborativa és senzillament robots dissenyats per dur a terme treballs de col·laboració amb els humans. Els robots col·laboratius o cobots són cada cop més utilitzats a les indústries. La robòtica col·laborativa és un dels àmbits d'actualitat en aquests moments. Però també és un dels més interessants en més d'un sentit. Com es comuniquen dos drons autònoms que col·laboren per fer una tasca? Com són aquests missatges que s'envien? Que poden fer que no podrien fer sols? Aquestes són algunes de les preguntes que ens volem respondre en aquest projecte. En aquest treball es presenta un disseny i implementació de dos drons terrestres que es comuniquen per col·laborar entre ells per resoldre una tasca.Collaborative robotics is simply robots designed to perform collaborative work with humans. Collaborative robots or cobots are increasingly used in industries. Collaborative robotics is one of the current topics now. But it is also one of the most interesting in more ways than one. How do two autonomous drones that collaborate to perform a task communicate? How are these messages sent? What can they do that they could not do alone? These are some of the questions we want to answer in this project. This work presents a design and implementation of two ground drones that communicate to collaborate with each other to solve a task.La robótica colaborativa es sencillamente robots diseñados para llevar a cabo trabajos de colaboración con los humanos. Los robots colaborativos o cobots son cada vez más utilizados en las industrias. La robótica colaborativa es uno de los ámbitos de actualidad. Pero también es uno de los más interesantes en más de un sentido. ¿Cómo se comunican drones autónomos que colaboran para hacer una tarea? ¿Cómo son estos mensajes que es envían? ¿Qué pueden hacer que no lo podrían hacer solos? Estas son algunas de las preguntas que queremos responder con este proyecto. En este trabajo se presenta un diseño e implementación de dos drones terrestres que se comunican para colaborar entre ellos para resolver una tarea

    Statutes Governing Physician-Staffed Emergency Medical Service Vehicle Equipment in Germany

    No full text
    Emergency medical services (EMS) in Germany are regulated by numerous state laws and regulations. The legal framework is faced with new scientific data, regulatory trends and quality management issues. This study aims to investigate the statutory provisions regarding physician-staffed ambulance equipment in the 16 federal states of Germany. Decrees and enactments regarding physician-staffed EMS vehicle equipment in EMS laws and regulations of all 16 federal states were reviewed. Time of last update and relevant authorities were also recorded. 12 of 16 states updated their EMS laws within the last 5 years. Requirements for EMS vehicle equipment vary from state to state. While some state laws do not mention vehicle equipment and most give rather unspecific requirements, the laws of 2 states specifically mention DIN norms such as the DIN 75079 Emergency car for emergency physicians Current legal regulations on EMS in Germany vary and may lead to considerable differences between states. A unified approach is necessary to ensure uniform standards in EMS vehicle equipment nationwide
    corecore