

Performance of the final Event Builder for the ATLAS Experiment

HP Beck LHEP – University of Bern

On behalf of ATLAS TDAQ DataFlow

15th IEEE NPSS Real Time Conference 2007 Fermilab, Batavia IL, 60510 April 29 – May 4, 2007

ATLAS TDAQ DataFlow

H.P. Beck¹, M. Abolins², A. Battaglia¹, R. Blair³, A. Bogaerts⁴, M. Bosman⁵, M. Ciobotaru⁶, R. Cranfield⁷, G. Crone⁸, J. Dawson³, R. Dobinson⁴⁺, M. Dobson⁴, A. Dos Anjos⁹, G. Drake³, Y. Ermoline², R. Ferrari¹⁰, M.L. Ferrer¹¹, D. Francis⁴, S. Gadomski¹, S. Gameiro⁴, B. Gorini⁴, B. Green¹², W. Haberichter³, C. Häberli¹, R. Hauser², C. Hinkelbein¹³, R. Hughes-Jones¹⁴, M. Joos⁴, G. Kieft¹⁵, K. Kordas¹, A. Kugel¹³, L. Leahu¹⁶, G. Lehmann⁴, B. Martin⁴, L. Mapelli⁴, C. Meessen¹⁷, C. Meirosu¹⁵, A. Misiejuk¹², G. Mornacchi⁴, M. Müller¹³, Y. Nagasaka¹⁸, A. Negri⁶, E. Pasqualucci^{19,20}, T. Pauly⁴, J. Petersen⁴, B. Pope², J. Schlereth³, R. Spiwoks⁴, S. Stancu⁶, J. Strong^{12†}, S. Sushkov⁵, T. Szymocha²¹, L. Tremblet⁴, G. Unel^{4,6}, W. Vandelli⁴, J. Vermeulen¹⁵, P. Werner⁴, S. Wheeler-Ellis⁶, F. Wickens⁸, W. Wiedenmann⁹, M. Yu¹³, Y. Yasu²², J. Zhang³, H. Zobernig⁹

+ deceased

- 1. Universität Bern, Switzerland
- 2. Michigan State University, Ann Arbor, MI
- 3. Argonne National Laboratory
- 4. CERN, Geneva, Switzerland
- 5. Inst. de Fisica de Altas Energias (IFAE), Universidad Autonoma de Barcelona, Spain
- 6. University of California, Irvine, CA, US
- 7. University College, London, UK
- 8. CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
- 9. Univ. of Wisconsin, Madison, WI, US
- 10. INFN Sezione di Pavia, Italy
- 11. Laboratori Nazionali di Frascati, Italy
- 12. Physics Department, Royal Holloway College, University of London, Italy

- 13. Universität Mannheim, Germany
- 14. University of Manchester, UK
- 15. NIKHEF, Amsterdam, The Netherlands
- 16. National Institute for Physics and Nuclear Engineering "Horia Hulubei", NIPNE-HH, Bucarest, Romania
- 17. CPPM Marseille, France
- 18. Hiroshima Institute of Technology, Japan
- 19. Universita di Roma "La Sapienza", Rome, Italy
- 20. INFN Roma, Rome, Italy
- 21. Henryk Niewodniczanski Inst. Nucl. Physics, Cracow, Poland
- 22. High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

Fermilab April 29 - May 4, 2007 3

Three Trigger-Levels

ATLAS Trigger & Data Acquisition

ATLAS Event Builder

¹⁵th IEEE NPSS Real Time Conference 2007

HP Beck - LHEP Bern

Fermilab April 29 – May 4, 2007 6

The Event Builder Pull protocol

The DFM recevies a trigger via the network

- □ From LVL2 (usually)
- □ From LVL1 (commissioning)

□ Self-triggering (these tests)

- Upon a trigger, the DFM assigns one free SFI to build the event
- The SFI sends data requests to every 2PU_LVL2_Decision ROS
 - ❑ Number of outstanding requests is limited → traffic shaping
- □ The ROS send their ROS_Fragment to the requesting SFI → and keep the data

□ The SFI receives the ROS_Fragement

- Or re-asks for the fragment again if transfer failed (timeout)
- □ The SFI builds the event from all ROSs
- The SFI informs the DFM that the event is finished
- The DFM sends a clear message to all ROSs
 HP Beck - I HEP Bern

Network Protocols used

- □ UDP / IP for data requests and data replies
- UDP / IP multicast for the DFM clear messages
- □ TCP / IP for data flow commands
- □ Possibility to use TCP / IP everywhere

Eventbuilder Topology in Spring 2007:

HP Beck - LHEP Bern

^{15&}lt;sup>th</sup> IEEE NPSS Real Time Conference 2007

Read-Out subsystem

153 ROS PCs installed

- □ 40 used for these tests
- □ 4U, 19" rack mountable PC
- □ Motherboard: Supermicro X6DHE-XB
- □ CPU: One 3.4 GHz Xeon
- □ Hyper threading not used
- uni-processor kernel
- RAM: 512 MB
- □ Network:
 - 2 GB onboard
 1 used for control network
 - 4 GB on PCI-Express card
 1 used for LVL2 data
 1 used for event building
- □ Redundant power supply
- Network booted (no local hard disk)
- Remote management via IPMI

The Event Builder Node: SFI

32 SFI PCs installed

- □ Final system ~100 SFIs
- □ 29 SFIs used in these tests
- □ 1U, 19" rack mountable PC
- □ Motherboard: Supermicro H8DSR-i
- □ CPU: AMD Opteron 252 2.6 GHz
- SMP kernel
- RAM: 2 GB
- □ Network:
 - **2 GB onboard**
 - 1 used for control network
 - 1 used for data-in
 - I GB on PCI-Express card used for data-out
 - □ 1 dedicated IPMI port
- □ Cold-swappable power supply
- Network booted
- Local hard disk to store event data; only used for commissioning
- ❑ Remote management via IPMI

The DataFlow Manager: DFM

□ 12 DFM PCs installed

- □ Final system needs 1 DFM
- □ 12 DFMs
 - □ run up to 12 TDAQ partitions in parallel
 - useful during commissioning

Same PC as for SFI

- □ Network:
 - 2 GB onboard
 1 used for control network
 1 used for data network
 1 dedicated IPMI port
- □ Cold-swappable power supply
- Network booted
- □ Local hard disk (not used)
- □ Remote management via IPMI

15th IEEE NPSS Real Time Conference 2007

The Switches

□ Force10 E1200

- 6 blades x 4 optical 10GE ports
- 2 blades x48 copper GE ports
- Up to 14 blades
 1260 GE ports total
 672 GE ports @ line
 speed

Data network

Event builder traffic

Force10 E600
 Up to 7 blades
 630 GE ports total

336 GE ports @ line speed

Data network

□ To Event Filter

15th IEEE NPSS Real Time Conference 2007

Force10 E600
 Up to7 blades
 630 GE ports total
 336 GE ports @ line
 speed

Control network

- Run Control
- Databases
 - Monitoring samplers

Measuring the scaling properties

15th IEEE NPSS Real Time Conference 2007

Traffic Shaping

- Traffic shaping is achieved by limiting the number of outstanding requests per SFI
- For big event sizes and large number of outstanding requests, the aggregated bandwidth drops
- → packet loss and subsequent re-ask of data fragment

Building Events and sending them to Event Filter

Reaching the limit of the Read-Out subsystem

No problem for building events of 1.5 MB @ 3 kHz

0

0

10

20

Number of SFIs

30

40

Conclusions

1/3 of the ATLAS Event Builder is installed

- All 153 Read-Out subsystems (ROSs) installed
 - > All 149 ROSs are used for detector commissioning plus 4 spares
 - \geq 40 ROSs used for these tests
- > 32 Event Builder nodes (SFIs) installed
 - 29 SFIs used for these tests

The ATLAS Event Builder is based on a pull protocol

- Data Flow Manager (DFM)
 - receives triggers from LVL2, LVL1 or self-triggering
 - Load-balances the SFI farm
- Event Builder node (SFI)
 - > Requests Data fragments from ROSs
 - In case of packet loss, data fragments can be re-asked
- Will use UDP / IP for requesting data and for sending data
 - Can also use TCP / IP

Have reached 2/3 of required bandwidth and rate with 1/3 of event builder nodes

- \succ 29 SFIs can do 2.2 kHz @ 1.5 MB per event \rightarrow 3.3 GB/s
- Expect 10% degradation when data is also sent to Event Filter
- > But \rightarrow no LVL2 traffic added yet....

It looks very promising to go even beyond ATLAS requirements — if needed

BackUp

HP Beck - LHEP Bern

15th IEEE NASSA Riberto Tiprit Donfellenace, 2007 18

Atlas Event Size

