6 research outputs found

    On-ice vibroseis and snowstreamer systems for geoscientific research

    Get PDF
    We present implementations of vibroseis system configurations with a snowstreamer for over-ice long-distance seismic traverses (>100 km). The configurations have been evaluated in Antarctica on ice sheet and ice shelf areas in the period 2010–2014. We discuss results of two different vibroseis sources: Failing Y-1100 on skis with a peak force of 120 kN in the frequency range 10–110 Hz; IVI EnviroVibe with a nominal peak force of 66 kN in the nominal frequency range 10–300 Hz. All measurements used a well-established 60 channel 1.5 km snowstreamer for the recording. Employed forces during sweeps were limited to less than 80% of the peak force. Maximum sweep frequencies, with a typical duration of 10 s, were 100 and 250 Hz for the Failing and EnviroVibe, respectively. Three different concepts for source movement were employed: the Failing vibrator was mounted with wheels on skis and pulled by a Pistenbully snow tractor. The EnviroVibe was operated self-propelled on Mattracks on the Antarctic plateau. This lead to difficulties in soft snow. For later implementations the EnviroVibe with tracks was put on a polyethylene (PE) sled. The sled had a hole in the center to lower the vibrator baseplate directly onto the snow surface. With the latter setup, data production varied between 20 km/day for 6-fold and 40 km/day for single fold for 9 h/day of measurements. The combination of tracks with the PE-sled was especially advantageous on hard and rough surfaces because of the flexibility of each component and the relatively lose mounting. The systems presented here are suitable to obtain data of subglacial and sub-seabed sediment layers and englacial layering in comparable quality as obtained from marine geophysics and land-based explosive surveys. The large offset aperture of the streamer overcomes limitations of radar systems for imaging of steep along-track subglacial topography. With joint international scientific and logistic efforts, large-scale mapping of Antarctica's and Greenland's subglacial geology, ice-shelf cavity geometries and sea-bed strata, as well as englacial structures can be achieved

    Seismische Untersuchungen des Russell Glacier, Kangerlussuaq, Grönland

    No full text
    Im Rahmen des von der EU geförderten Projektes Ice2Sea, dessen Ziel es ist, den Einfluss der Randzonen großer Eisschilde auf Änderungen des Meeresspiegels zu erfassen, wurde im September 2013 unter Leitung des AWI ein seismisches Projekt mit dem Namen Ice bed-Ice edge durchgeführt. Ziel war es, auf dem Russel-Gletscher an zwei Stellen, eine etwa 7, die andere ca. 60 km vom Eisrand entfernt, auf je 2 sich kreuzenden 5 km langen Profilen die Eisdicke und die Struktur des Gletschers zu untersuchen. Die Profilrichtungen lagen jeweils in Strömungsrichtung des Gletschers und rechtwinklig dazu. Zum Einsatz kam ein 190 m langer snow streamer mit 96 Geophonen; aufgezeichnet wurde mit 4 Geode Registriereinheiten. Angeregt wurde mit Sprengstoff (250 g bzw. 500 g Dynamit im 2 m tiefen Bohrloch) mit einem Schusspunktabstand von 50 m. Dazwischen wurden zum Teil versuchsweise Messungen mit einem Minivibrator (ELVIS) als Energiequelle ausgeführt. An der randnahen Lokalität werden Wasserkörper im Eis und Sedimentschichten im Untergrund vermutet. Im zweiten Messgebiet zeigen die seismischen Daten einen ca. 1800 m langen und 600 m breiten linsenförmigen etwa 20 m dicken Körper unter dem Eis der auf einen subglazialen See deutet. Die Auswertung der Daten ist noch nicht abgeschlossen

    Operational vibroseis system for long-distance traverses

    Get PDF
    This poster presents results and performance of an operational vibroseis system used in Antarctica on the Ekströmisen and its catchment area. The about 500 km long overland traverse covered very different surface regimes in the elevation range from sea level up to 1000 m in the austral season 2013/14. The presentation is the successful culmination of a six-year effort to develop an operational vibroseis system for Antarctica and Greenland. Over three weeks the campaign acquired: • 407 km of seismic profiles in total, thereof • 110 km in 6-fold resolution with 125 m shot spacing • 25 km in 3-fold resolution with 250 m shot spacing. The remaining distance was covered in single-fold with 750 m shot spacing. The traverse used a well-established 60 channel 1.5 km streamer and a new setup with a vibroseis Buggy “EnviroVibe” with Mattracks on a polyethylen sled. The sled had a hole in the center to lower the vibrator pad directly onto the snow surface. With this setup data production varied between 20 km/day for 6-fold and 40 km/day for single fold for a decent 9h day of measurements. The combination of Mattracks with the PE-sled was especially advantageous on hard and rough surfaces because of the flexibility of each and the relatively lose mounting by cargo straps and wooden blocks. Production speeds were limited by the snow streamer, which had an increasing damage rate of geophone groups for velocities above 6 km/h. The source system itself could easily accommodate transfer velocities of 15 km/h. In combination with the streamer winch mounted in front of the source on a separate freight sled the channel spacing could be reduced to fractions of the 25 m spacing interval by combining several sweeps at the same location, thus increasing spatial resolution. The vibrator source was operated with a 10-250 Hz sweep over 10 s with 80% of the peak force of 66 kN. On soft surfaces a setup-sweep was utilized. Preliminary data analysis shows that sea floor geomorphology, subglacial sedimentary layering and englacial layering can be clearly imaged in the respective resolution of the source’s bandwidth. Interestingly, the ration of p-wave to s-wave energy varied considerably depending on the surface characteristics. In comparison to airborne and ground-based radar surveys, the system was able to image very steep sidewalls of subglacial trenches because of the large offset aperture where radar systems did not provide any reflections. Such system will help to considerably improve the future characterisation of sublglacial and englacial environments

    The EPICA Dronning Maud Land deep drilling operation

    Get PDF
    We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run

    EPICA Dronning Maud Land EDML ice core drilling protocol

    No full text
    We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run
    corecore