8,363 research outputs found

    Network and psychological effects in urban movement

    Get PDF
    Correlations are regularly found in space syntax studies between graph-based configurational measures of street networks, represented as lines, and observed movement patterns. This suggests that topological and geometric complexity are critically involved in how people navigate urban grids. This has caused difficulties with orthodox urban modelling, since it has always been assumed that insofar as spatial factors play a role in navigation, it will be on the basis of metric distance. In spite of much experimental evidence from cognitive science that geometric and topological factors are involved in navigation, and that metric distance is unlikely to be the best criterion for navigational choices, the matter has not been convincingly resolved since no method has existed for extracting cognitive information from aggregate flows. Within the space syntax literature it has also remained unclear how far the correlations that are found with syntactic variables at the level of aggregate flows are due to cognitive factors operating at the level of individual movers, or they are simply mathematically probable network effects, that is emergent statistical effects from the structure of line networks, independent of the psychology of navigational choices. Here we suggest how both problems can be resolved, by showing three things: first, how cognitive inferences can be made from aggregate urban flow data and distinguished from network effects; second by showing that urban movement, both vehicular and pedestrian, are shaped far more by the geometrical and topological properties of the grid than by its metric properties; and third by demonstrating that the influence of these factors on movement is a cognitive, not network, effect

    R chart control limits based on a small number of subgroups technical report no. 83

    Get PDF
    Statistical analysis - R chart control limit based on small number of subgroup

    Mapping the potential energy surfaces for ring-closing metathesis reactions of prototypical dienes by electronic structure calculations

    Get PDF
    The potential energy surfaces for ring-closing metathesis reactions of a series of simple alpha,omega-dienes which lead to 5-10 membered ring products, have been explored using density functional theory methods. We have investigated both the conformational aspects of the hydrocarbon chain during the course of the reactions, as well as the stationary structures on the corresponding potential energy surfaces. Extensive conformational searches reveal that the reaction proceeds via the conformation that would be expected for the cycloalkene product, though most unexpectedly, cyclohexene forms via complexes in boat-like conformations. The M06-L density functional has been used to map out the potential energy surfaces, and has identified metallocyclobutane fragmentation as being generally the highest barrier along the pathway. The structural variations along the pathway have been discussed for the reactant hydrocarbons of differing chain length to identify points at which cyclisation events may begin to affect reaction rates. Our study provides an excellent starting point from which to begin to learn about the way RCM reaction outcomes are controlled by diene structur

    Ion-neutral decoupling in the nonlinear Kelvin–Helmholtz instability: Case of field-aligned flow

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this recordThe nonlinear magnetic Kelvin-Helmholtz instability (KHi), and the turbulence it creates, appears in many astrophysical systems. This includes those systems where the local plasma conditions are such that the plasma is not fully ionised, for example in the lower solar atmosphere and molecular clouds. In a partially ionised system, the fluids couple via collisions which occur at characteristic frequencies, therefore neutral and plasma species become decoupled for sufficiently high-frequency dynamics. Here we present high-resolution 2D two-fluid simulations of the nonlinear KHi for a system that traverses the dynamic scales between decoupled fluids and coupled dynamics. We discover some interesting phenomena, including the presence of a density coupling that is independent of the velocity coupling. Using these simulations we analyse the heating rate, and two regimes appear. The first is a regime where the neutral flow is decoupled from the magnetic field that is characterised with a constant heating rate, then at larger scales the strong coupling approximation holds and the heating rate. At large scales with the KHi layer width to the 2 power. There is an energy cascade in the simulation, but the nature of the frictional heating means the heating rate is determined by the largest scale of the turbulent motions, a fact that has consequences for understanding turbulent dissipation in multi-fluid systems.Science and Technology Facilities Council (STFC

    The Atomic Physics Underlying the Spectroscopic Analysis of Massive Stars and Supernovae

    Full text link
    We have developed a radiative transfer code, CMFGEN, which allows us to model the spectra of massive stars and supernovae. Using CMFGEN we can derive fundamental parameters such as effective temperatures and surface gravities, derive abundances, and place constraints on stellar wind properties. The last of these is important since all massive stars are losing mass via a stellar wind that is driven from the star by radiation pressure, and this mass loss can substantially influence the spectral appearance and evolution of the star. Recently we have extended CMFGEN to allow us to undertake time-dependent radiative transfer calculations of supernovae. Such calculations will be used to place constraints on the supernova progenitor, to place constraints on the supernova explosion and nucleosynthesis, and to derive distances using a physical approach called the "Expanding Photosphere Method". We describe the assumptions underlying the code and the atomic processes involved. A crucial ingredient in the code is the atomic data. For the modeling we require accurate transition wavelengths, oscillator strengths, photoionization cross-sections, collision strengths, autoionization rates, and charge exchange rates for virtually all species up to, and including, cobalt. Presently, the available atomic data varies substantially in both quantity and quality.Comment: 8 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc

    Augmented reality meeting table: a novel multi-user interface for architectural design

    Get PDF
    Immersive virtual environments have received widespread attention as providing possible replacements for the media and systems that designers traditionally use, as well as, more generally, in providing support for collaborative work. Relatively little attention has been given to date however to the problem of how to merge immersive virtual environments into real world work settings, and so to add to the media at the disposal of the designer and the design team, rather than to replace it. In this paper we report on a research project in which optical see-through augmented reality displays have been developed together with prototype decision support software for architectural and urban design. We suggest that a critical characteristic of multi user augmented reality is its ability to generate visualisations from a first person perspective in which the scale of rendition of the design model follows many of the conventions that designers are used to. Different scales of model appear to allow designers to focus on different aspects of the design under consideration. Augmenting the scene with simulations of pedestrian movement appears to assist both in scale recognition, and in moving from a first person to a third person understanding of the design. This research project is funded by the European Commission IST program (IST-2000-28559)

    The qWR star HD 45166. II. Fundamental stellar parameters and evidence of a latitude-dependent wind

    Full text link
    The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i=0.77 +- 0.09 deg), HD 45166 is an ideal laboratory for wind-structure studies. The goal of the present paper is to determine the fundamental stellar and wind parameters of the qWR star. A radiative transfer model for the wind and photosphere of the qWR star was calculated using the non-LTE code CMFGEN. The wind asymmetry was also analyzed using a recently-developed version of CMFGEN to compute the emerging spectrum in two-dimensional geometry. The temporal-variance spectrum (TVS) was calculated for studying the line-profile variations. Abundances, stellar and wind parameters of the qWR star were obtained. The qWR star has an effective temperature of Teff=50000 +- 2000 K, a luminosity of log(L/Lsun)=3.75 +- 0.08, and a corresponding photospheric radius of Rphot=1.00 Rsun. The star is helium-rich (N(H)/N(He) = 2.0), while the CNO abundances are anomalous when compared either to solar values, to planetary nebulae, or to WR stars. The mass-loss rate is Mdot = 2.2 . 10^{-7} Msun/yr, and the wind terminal velocity is vinf=425 km/s. The comparison between the observed line profiles and models computed under different latitude-dependent wind densities strongly suggests the presence of an oblate wind density enhancement, with a density contrast of at least 8:1 from equator to pole. If a high velocity polar wind is present (~1200 km/s), the minimum density contrast is reduced to 4:1. The wind parameters determined are unusual when compared to O-type stars or to typical WR stars. (abridged)Comment: 16 pages, 13 figures, accepted for publication in A&
    • 

    corecore