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The nonlinear magnetic Kelvin-Helmholtz instability (KHi), and the turbulence it creates, appears in many astrophysical
systems. This includes those systems where the local plasma conditions are such that the plasma is not fully ionised,
for example in the lower solar atmosphere and molecular clouds. In a partially ionised system, the fluids couple
via collisions which occur at characteristic frequencies, therefore neutral and plasma species become decoupled for
sufficiently high-frequency dynamics. Here we present high-resolution 2D two-fluid simulations of the nonlinear KHi
for a system that traverses the dynamic scales between decoupled fluids and coupled dynamics. We discover some
interesting phenomena, including the presence of a density coupling that is independent of the velocity coupling. Using
these simulations we analyse the heating rate, and two regimes appear. The first is a regime where the neutral flow
is decoupled from the magnetic field that is characterised with a constant heating rate, then at larger scales the strong
coupling approximation holds and the heating rate. At large scales with the KHi layer width to the −2 power. There is
an energy cascade in the simulation, but the nature of the frictional heating means the heating rate is determined by the
largest scale of the turbulent motions, a fact that has consequences for understanding turbulent dissipation in multi-fluid
systems.

I. INTRODUCTION

The magnetohydrodynamic (MHD) Kelvin-Helmholtz in-
stability (KHi) is a fundamental instability of magnetized
plasma. It occurs in systems that have unstable velocity
shears, resulting in the formation of vortices. This instability
has been observed in many astrophysical systems including
the flanks of coronal mass ejections1, the flanks of the Earth’s
magnetosphere2 and in solar prominences3–5.

The classic hydrodynamic (HD) KHi is the instability of
a discontinuous velocity shear, and is unstable for any dif-
ference in velocity across the flow discontinuity. In systems
where magnetic fields are present, they can play a key role in
the suppression of the instability6 as the bending of magnetic
fields to create vortices results in a magnetic tension force that
works to suppress the vortex growth. A necessary condition
for this instability to form in generic field-aligned flows (in-
cluding discontinuous flows) is that the difference between the
maximum and minimum velocity must exceed twice the min-
imum Alfvén speed7.

Due to the low temperatures of many astrophysical systems
(e.g. stellar atmospheres and protoplanetary disks), there is
insufficient energy to fully ionise the plasma. As a result the
majority of the fluid is composed of neutral species. Meaning
that even though magnetic fields can play an important dy-
namic role, the plasma itself is composed mostly of species
that do not directly feel the magnetic field. In this regime,
there is a drift in the velocity between ions and neutrals be-
cause of the different forces the different species feel8,9. These
physical processes are found to be important in a wide range
of astrophysical plasmas10.

This drift between the species means that when they col-
lide, momentum is transferred and over time the drift between
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the species will reduce resulting in the two fluids flowing to-
gether. Because this drift velocity between the species can re-
sult in frictional heating, the coupling process can be dynam-
ically important for energy dissipation11. Single fluid approx-
imations, using ambipolar diffusion in a modified Ohm’s law,
can be applied when the dynamic frequency is much smaller
than the collision frequencies12. However, when this is not the
case, multifluid modelling is necessary13.

Investigations into the partially ionised plasma effects on
the KHi have been performed for both linear and nonlinear
settings. Investigations have been performed into the linear
stability condition for the KHi in the interstellar medium, as-
suming an incompressible flow with constant density14. The
key result found in this study is that for much of the parameter
range of interest, the neutrals would be unstable but the ions
would be held in place by the magnetic field14. The linear sta-
bility conditions for the two-fluid KHi in solar prominences
show that in the incompressible limit instability is present for
any velocity shear15. However, the inclusion of compressibil-
ity meant that the onset velocity shear value became heavily
dependent on the parameters used, especially the density con-
trast and collision frequency15. Applying these results to the
case of the KHi driven by prominence plumes3, it was found
that sub-Alfvénic flow velocities could trigger the instability
as a result of the finite ion-neutral coupling15. Further studies
have been performed for the linear and nonlinear development
of the KHi in a partially-ionised dusty plasma16, and into the
effect of a finite boundary17.

Nonlinear simulations, performed for the case of a very low
ionisation degree which is appropriate for molecular clouds
have been performed for both single fluid modelling18 and for
multifluid (neutral, ion, electron and dust) modelling19 . Sig-
nificant differences from reference MHD cases were found,
with the ion-neutral drift resulting in a significantly weaker
wind-up of the magnetic field.

In this paper, we present a study of the nonlinear regime to
investigate the physics of the KHi in partially ionised plasma.
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We focus is on what happens for the nonlinear KHi at different
dynamic frequencies (νD) when compared with the collisions
of the neutrals on the ions (νnp) and the ions on the neutrals
(νpn) and how this influences the turbulent structures and dis-
sipation at different scales.

II. METHODS

A. Partially Ionised Plasma MHD

In this study we investigate the dynamics of a neutral fluid
and a charge-neutral fully-collisionally-coupled ion electron
plasma. The nondimensional equations solved for the evolu-
tion of the neutral hydrogen fluid are:
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The full nondimensional equations solved for the evolution of
the charge-neutral ion-electron plasma fluid are:
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Here the subscripts n and p differentiate between the neutral
fluid and the plasma respectively. In this formulation αcρa =
νab which is the collision frequency of species a on species b.
This system of equations has been non-dimensionalised in the
following way: The velocity v has been non-dimensionalised
using the sound speed of the combined fluids Cs, the density ρ

by a reference total density ρ0, and time t by the inverse of a
characteristic collision frequency (αc,REFρ0)

−1. This implies
that the lengthscales of the system are nondimensionalised by
Cs(αc,REFρ0)

−1, the pressure p by C2
s ρ0 and the magnetic field

B by B0/
√

4π = Cs
√

ρ0. Here the subscript 0 is used to rep-
resent a reference value of a quantity, γ is the adiabatic index
and β is plasma β (the ratio of gas to magnetic pressure calcu-
lated using the total gas pressure of the fluids). We assume that
both fluids follow the ideal gas law which in non-dimensional
form become Tn =

Pnγ

ρn
and Tp =

Ppγ

2ρp
, respectively.

The simulations are run using a fourth-order central dif-
ference method with the (PIP) code13. To allow the largest
possible inertial range of any turbulent behaviour to develop,
we do not include explicit viscosity or magnetic resistivity.
However, for stability of the scheme we employ an artificial
viscosity and diffusion20.

B. simulation setup

In this set of simulations, we take the initial steady-state to
be:

ρ =

{
1 if y < 0;
1.5 if y > 0

, (11)

vx =

{
−∆V ×1.5/2.5 if y < 0;
∆V ×1/2.5 if y > 0

, vy = 0, (12)

p =
1
γ
, (13)

Bx =

√
2

γβ
, By = 0. (14)

We use a velocity difference of ∆V = 0.2 and take plasma
β = 200 and γ = 5/3. We use an ionization fraction of ξi =
0.015 and a collisional coefficient of αc = 300. The velocity
magnitudes we have chosen here approximately put the linear
instability into its zero momentum frame.

The system is perturbed by a white noise perturbation in
the y component of the velocity field. The magnitude of the
perturbation is limited to 0.1 per cent of the sound speed in
the low density region.

We use a domain between x =−1.5 to 1.5 and y=−0.75 to
0.75 unless otherwise stated. For the high resolution simula-
tions a grid of 16384×8192 is used. For all other simulations
the grid is 2048×1024. We use a periodic boundary for the x
boundaries, and symmetric boundaries that the magnetic field
cannot penetrate for the y boundaries.

C. Physical meaning of this setup

The non-dimesionalised growth rate σ of the single-fluid
ideal MHD instability (and as such is holds for our system in
the limit αc→ ∞) in the incompressible limit is given as:

σ
2 = k2 ρ1

ρ1 +ρ2

(
ρ2

ρ1 +ρ2
∆V 2− 4

γβρ1

)
, (15)

where ρ1,2 are the densities below and above y = 0 respec-
tively, k is the wavenumber of the perturbation, and ∆V is the
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velocity difference. Note that this equation is equivalent to
Equation 204 in Section 106 of Chandrasekhar 6 when gravity
is set to zero, and as the initial conditions of this study have
been put in the zero-momentum rest frame relating to the lin-
ear analysis, the growth rate σ is either purely real or purely
imaginary. In the hydrodynamic limit, β → ∞, this reduces to
the purely hydrodynamic growth rate.

For the parameters of the simulation we have σ2/k2 =
0.0048, which is half of the value for the purely hydrodynamic
instability. Though we are running a compressible simula-
tion, the level of the compressibility (which can be estimated
from the Mach number squared) is approximately 0.048, so
we expect that the estimated growth rates in the incompress-
ible limit will reasonably hold. However, when σ2 is calcu-
lated purely for the plasma, the term associated with the mag-
netic tension is ξ

−1
i larger. In this case σ2/k2 = −0.31, so

though the neutral fluid is unstable and the coupled fluids are
unstable (though less so than the neutral fluid), the plasma is
stable. This means that the neutral fluid will always be un-
stable, but only when the perturbation is on a large enough
scale the instability will involve the the whole fluid and the
magnetic field.

As we are looking at the nonlinear problem, it is also impor-
tant to estimate the relative importance of the magnetic field
in the nonlinear stage of the instability. To do this, we fol-
low methods that have been applied to the magnetic Rayleigh-
Taylor instability21. Firstly, we look at the saturation by sec-
ondary KHi. For the displacement of the boundary ηy we can
estimate, using the linear eigenfunction6:

ηy(x, t) = ηy(0)exp(ikx− k|y|+σt), (16)

the displacement at which the magnitude of the terms that are
second-order in ηy are of the same order of magnitude as the
first-order terms. Firstly, we look at how the development of
secondary shear-flows can saturate the instability:
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This gives:
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which is the same as the characteristic vertical scale given in
the linear eigenfunction. If we take the Lorentz force as the
nonlinear term then:
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where the j and the b are lower case to denote perturbed com-
ponents of the current and magnetic field respectively, the
subscript y on the vector field to show which component of
the vector is used, and the density ρ has been taken to be
(ρ1 +ρ2)/2. In linear MHD22
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ρ1. This gives (for the initial conditions of
this study):
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(22)
which is the same length as found for hydrodynamic nonlin-
earities. Therefore, we expect that for an MHD system with
the initial parameters of our model, the magnetic nonlineari-
ties will be of the same level of importance as flow nonlinear-
ities in determining the dynamic evolution of the system. This
is also presented through the reference numerical simulations
in Section III A.

To estimate the spatial scales at which decoupling will oc-
cur in these calculations for both linear and nonlinear pro-
cess, we can perform a comparison of timescales. Firstly,
the characteristic collision frequencies between the species are
νpn = 300×0.985= 295.5 and νnp = 300×0.015= 4.5 based
on the initial values of ξi = 0.0015 and αc = 300. Comparing
the collision frequency of neutrals onto ions with the growth
rate of the hydrodynamic KHi we find a non-dimensional
wavenumber of k ≈ 46 where they are equal. Comparing the
collision frequency of ions onto neutrals with the magnitude
ion surface Alfvén wave frequency we find a wavenumber of
k ≈ 531 where they are equal. For wavenumbers smaller than
these we would expect to see more coupled, single fluid like
behaviour, and greater than these would behave in a more de-
coupled fashion (note that the k used in the high resolution
simulation is between ∼ 2.1 to ∼ 17158).

For nonlinear phenomena, we can look to arguments of tur-
bulence scalings. In terms of having a turbulent cascade driv-
ing a vortex that is in the neutral fluid and uninhibited by the
magnetic field, then the frequency of the turbulence given by:

νturb ∝ (εk2)1/3, (23)

where ε is the energy cascade rate, would have to be greater
than νni = 4.5.

To summarise the information of this subsection, given
to help the reader understand why the particular parameter
regime is under study, we have chosen this particular param-
eter regime because we expect it will allow us to look at the
coupling from strong coupling at the largest spatial scales, to
completely decoupled at the smallest. This parameter regime
also has the benefit of having an important contribution by the
magnetic field in determining both the linear and nonlinear
behaviour of the system.

III. RESULTS

A. Reference HD and MHD simulations

To provide sufficient context to our solutions we have per-
formed both HD and MHD simulations of the initial condi-
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tions laid out in Section II B for a resolution of 2048× 1024
over a domain of x = [−3,3] and y = [−0.75,0.75]. These are
performed to provide context for the two-fluid simulations,
showing the evolution we expect in single fluid simulations.

1. HD evolution

In the HD case, the nonlinear evolution is characterised by
the formation and subsequent merger of vortices. Figure 1
shows the nonlinear development of the simulation at time
t = 50. There are a collection of vortices that have formed,
and at x ≈ 0.2 and y ≈ −0.1 there is an example of two vor-
tices undergoing a merger (see the white box on Figure 1).
As a result of the density contrast, it is clear that as well as the
inverse cascade creating the larger vortices, there is also a cas-
cade of scales driving the formation of many small vortices.

A snapshot of the density weighted velocity (
√

ρvy) spectra
is shown in Figure 2. At larger k the spectra has a relatively
constant slope over a region of about a decade (between k≈ 4
to k ≈ 100), this approximately corresponds to a slope of ∼
k−5/3 as shown by the magenta line on the figure. At smaller
scales a bump in the spectra is present, composed of a region
which follows a slope of ∼ k−1 at smaller k and ∼ k−2.3 at
larger k.

Previous studies of the spectra of 2D hydrodynamic KHi
mixing23, provide an important reference point for the slopes
present in our spectra.For similar density contrasts to the one
used in this paper, spectra containing a dominant component
that followed k−1.38, which is consistent with the approxi-
mate relation with k−5/3, that we found. This approximately
Kolmogorov-like spectra was formed as a result of the cas-
cade driven by the baroclinic term in the vorticity equation
(∝ ∇ρ×∇p).

Looking at the results shown in Figure 2 of Matsumoto and
Hoshino 23 , as their system is evolving in time towards the
statistical steady state, there are bumps present in the spectra.
We conjecture that the departures from this slope we see (in
the form the approximate slopes of ∝ k−1 and ∝ k−2.3 com-
ponents), are present because the system is still undergoing
an inverse cascade, and as such has not reached a statistical
steady state. Evidence for this conjecture can be seen in Fig-
ure 1 where there are two vortices in the process of merger.

2. MHD evolution

The nonlinear stages of this instability, for the parameters
we have chosen, shows a marked difference from the purely
HD simulation. Figure 3 shows the density distribution of the
simulation at the same time as shown in Figure 1. From the
large undulations of the boundary between the different den-
sity layers, it is clear that there has been growth of a linear
instability. However, there has not been the development of
over-turning vortices that the KHi is associated with (and are
visible in the HD simulation). The key reason behind this
is that the magnetic field is playing a key role in the nonlin-
ear suppression of the instability. Therefore we can under-

stand that the MHD case is linearly unstable, but in a sense
nonlinearly stable. This situation has been seen in previous
simulations24.

It is not that the dynamics are purely limited to some
large deformations of the boundary. The magnetic field lines,
shown in the figure by the white lines, trace the smooth bound-
ary between the two fluids accurately. However, in the re-
gions just above and below the interface, the magnetic field
has been more significantly disturbed. We can understand this
by thinking about how the flow is trying to behave, and how
the magnetic field is working against this. If we imagine the
fluid flowing around a hump of the interface, the fluid needs to
experience a force to make it keep following the curve of the
interface. As the gas pressure is working to form vortices, it is
magnetic tension that must provide the force to work against
the gas pressure. Therefore, the magnetic field undergoes a
distortion preventing the formation of vortices.

Figure 4 displays the density weighted velocity spectra√
ρvy and By at y = 0. As with the reference HD case the

smoothed spectra is shown in black with the unsmoothed
spectra behind it. The peak magnitude of the spectra in the
MHD case are about one order of magnitude smaller than the
HD case. The spectra can be characterised by a flat region at
small k, which falls away beyond k > 20. The magenta line
shows the slope expect for a spectra that follows k−2. The
central region of the power spectra between k of 100 and 500
appears to roughly follow this exponent. However, in this case
we could have chosen different regions and found any slope
with exponent between −1 and −2.5.

B. High-Resolution PIP Simulations

Next we look at the nonlinear dynamics of the nonlinear
KHi in a partially ionised plasma at multiple coupling scales
and the cross-scale coupling, through the evolution of a high-
resolution simulation. Using the dynamics present in the
reference HD and MHD cases, we can expect that in cases
where the neutral fluid has decoupled from the magnetic field
it would be expected to have the full nonlinear development
of the instability in the neutral fluid. However, in situations
where the coupling is stronger, then the fully nonlinear insta-
bility will not develop. By studying the dynamics over multi-
ple lengthscales then the role of this coupling (which naturally
becomes stronger at larger scales) can be elucidated.

Figure 5 shows the system at t = 0.4 at scales where
νD ∼ νpn > νnp (where νD is the dynamic frequency). Here
we have zoomed into the region of x = [−0.015,0.015] and
y = [−0.005,0.005]. This early stage is characterised by the
quick development of the instability in the neutral fluid at very
small scales. Though there is some response in the plasma,
but on measuring the magnitude of By/Bx at y = 0 is bounded
by |By/Bx| . 0.01 showing that the magnetic field has not
been significantly deformed. Therefore, at these scales we are
seeing an almost purely hydrodynamic evolution which will
mimic that seen in the HD reference case.

The result of the different dynamics in the two fluids results
in substantial drift velocities in the system. The magnitude of
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FIG. 1. ρn distribution at t = 50 showing the nonlinear stage of the HD KHi for the chosen parameters. Both large scale vortices (∼ half the
box width) and smaller turbulent structures are visible.

FIG. 2. Power spectra for the density weighted y velocity at y =
0 and t = 50. The black line showing the smoothed spectra with
the unsmoothed spectra plotted behind it. The straight lines show
the slopes of k to different exponents used to highlight regions of
different behaviour in different regions of the spectra.

the drift in the velocity between the neutral and plasma fluids
reaches values up to approximately 60 per cent of the initial
velocity shear. The largest drift velocity magnitudes appear
where the neutral fluid flow is roughly perpendicular to its
original flow direction, i.e. where the neutral fluid contained

in a vortex is moving directly across the magnetic field.
Figure 6 shows the system at t = 2.25 at scales where

νpn > νD > νnp. Here we have zoomed into the region of
x = [−0.15,0.15] and y = [−0.05,0.05]. At these scales there
is still fully-developed vortex formation in the neutral fluid.
It also appears that the plasma fluid is responding to the neu-
tral fluid motions, with vortex-like density structures form-
ing in the plasma density. However, looking at the mag-
netic fieldline distribution, even though the vortex-like density
structures have formed the magnitude by which the magnetic
field has been distorted (the magnitude of By/Bx at y = 0 is
|By/Bx|< 0.1) appears to be significantly smaller than that of
the neutral density interface. This gives the impression that
the plasma is flowing directly across the magnetic field. This
is analysed in Section III B 1.

At these scales, there are still large regions with significant
velocity drift. These regions reach a maximum value of ap-
proximately 80 per cent of ∆V . This is strongly localised in
the vortices to regions near the core of the vortex (as defined
by the scale of the density structure). The two merging vor-
tices at [−0.06,−0.01] (see region in white box in the bottom
panel of Figure 6 highlighting the drift velocity structure as-
sociated with vortex merger) show the interesting feature of
almost no velocity drift between them, but on the outer edges
of the vortices there is large velocity drift.

Figure 7 shows the system at t = 19 at scales where we es-
timate that νpn > νD ∼ νnp. Here we have zoomed into the
region of x = [−0.75,0.75] and y = [−0.25,0.25]. There are
fully-formed vortices in the neutral fluid, with many smaller
secondary vortices formed. At these scales the influence of
the magnetic field is beginning to be felt by the neutral fluid
as a result of the collisions between the fluids. This can be
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FIG. 3. ρp distribution at t = 50 showing the nonlinear stage of the MHD KHi for the chosen parameters. White lines show the magnetic field
lines. Note that no vorticies have formed, but there is some evidence of the magnetic field wrapping up.

FIG. 4. Power spectra for the density weighted neutral y velocity (panel a) and the y component of the magnetic field (panel b) at y = 0 and
t = 50. The black line showing the smoothed spectra with the unsmoothed spectra plotted behind it. The straight line show the slopes of k to
the exponent −2 used to highlight the behaviour of the spectra.

observed in the shape of the largest vortices that have formed.
The large scale vortices are squashed and elongated along the
magnetic field, but the small-scale secondary instabilities ap-
pear unaffected by the magnetic field. The structure of the
vortices, including the secondary vortices, is also clearly visi-
ble in the plasma density distribution. Note that this snapshot
is taken from the same simulation as used for Figures 5 and

6, just taken at a later time and zoomed out to display larger
dynamics.

At this larger scale, the absolute magnitude of the drift
velocity has decreased (note the reduction in range of the
colourscale). The general structure shows the vorticies and the
disturbances they have made outside of the instability layer.
There is also noticeable small-scale structuring in the drift ve-
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FIG. 5. Zoomed in snapshot of the simulated densities (top panel for ρn and middle panel for ρp) and magnitude of the drift velocity (bottom
panel) at t = 0.4. The white lines in the middle panel show the magnetic field lines. A number of vorticies are clear in the neutral density, but
there is only a diffuse plasma density and no response in the magnetic field. Velocity differences of magnitude ∼ ∆V/2 are created as a result
of the decoupling of the neutral fluid.

locity created by the secondary instabilities, but the large scale
structure, as well as highlighting the vortex shape, contains
contains long, coherent strips that follow the direction of the
magnetic field.

1. How can the plasma move across the magnetic field?

One question that can be raised about these results is: how
does the density structure form in the plasma if the magnetic
field is not bending? This may lead to the impression that
the plasma is moving across the magnetic field, which should
not be possible when the induction equation contains no terms
that allow a decoupling of the plasma and the field, i.e. there
is no magnetic diffusion.
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FIG. 6. Zoomed in snapshot of the simulated densities (top panel for ρn and middle panel for ρp) and magnitude of the drift velocity (bottom
panel) at t = 2.25. The white lines in the middle panel show the magnetic field lines. A number of vortices of multiple scales are clear in the
neutral density. These structures are also clear in the plasma density even though there has been no response in the magnetic field. Velocity
differences of magnitude ∼ ∆V/2 are created as a result of the decoupling of the neutral fluid.

In short, the plasma is still coupled to the field. It is only
the neutral fluid that moves across the magnetic field. This is
shown in Figure 8 where we zoom in to the range x = [0,0.09]
and y= [−0.03,0.03] to analyse one vortex structure as shown
in Figure 6. The colour contour shows the density of the neu-
tral fluid (left panel) and plasma (right panel) and the arrows
show the velocity vector. If we look at the velocity field of the
neutral flow (from t=2.25), a clear vortex has formed along
with the vortical density structure. However, in the plasma,

the flow vector direction is still close to the original shear flow
(i.e. aligned with the x-axis) and shows no vortex. Therefore,
even though the density shows a vortex, the flow is still frozen
into the magnetic field.

The question then is: why does this density structure exist?
This all happens as a thermal effect. When the cool dense neu-
tral fluid (initially set in the z > 0 region) moves into the z < 0
region (or the light warm neutral fluid moves to the z> 0) they
force the plasma they interact with to change temperature. The
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FIG. 7. Zoomed in snapshot of the simulated densities (top panel for ρn and middle panel for ρp) and magnitude of the drift velocity (bottom
panel) at t = 19. The white lines in the middle panel show the magnetic field lines. Multiple scale vortices are clear in both the neutral density
and in the plasma density. There is a large scale response in the magnetic field, but nothing connected to the other smaller scales present.
Smaller velocity difference magnitudes of ∼ ∆V/5 are created as a result of the decoupling of the neutral fluid.

plasma pressure gradient along the magnetic field this creates
drives compression or expansion of the plasma along the field
lines and the cooling or heating of the instability region leads
to contraction or expansion of the layer in the direction across
the magnetic field. This leads to increases or decreases in the
plasma density that match the high and low density patches of
neutral fluid.

The proof of this is shown in Figure 9, where the x-direction
mean of the temperature (T ), Pp, ρp and By are shown. The

mean temperature of both fluids are plotted, but they follow
the same distribution as a result of the heating/cooling effect
the neutral dynamics have on the plasma. This results in re-
gions of increased/decreased plasma pressure, which corre-
spond to regions of decreased/increased plasma density and
magnetic field strength as a result of the squeezing and ex-
panding of the layer.

There is an interesting corollary that results from this: even
if the motions in the neutral fluid are very close to being in-
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FIG. 8. Image of the neutral and plasma density structures for a vortex isolated from Figure 6 (i.e. taken at t = 2.25). The white arrows show
the neutral and plasma velocity vectors respectively. The neutral flow shows a clear vortex, but the plasma flow is still a shear flow. Note that
the swirl in the neutral density maintains its level, but in the plasma density there is a jump in the magnitude of the density at y≈ 0.

FIG. 9. Plots of the x averaged temperature (panel a), plasma pressure (b), plasma density (c) and x magnetic field (d) at t2.25.



Ion-neutral decoupling in the Kelvin-Helmholtz instability 11

compressible, the inclusion of the magnetic field results in the
plasma fluid undergoing compressible motions. Therefore,
even only weakly compressible turbulent motions should be
treated as compressible in a two-fluid system because of the
response of the plasma to the neutral motions.

As this is a thermal effect, then we can expect that its mag-
nitude will vary greatly with plasma β , especially the plasma
β when calculated with respect to the plasma and not the bulk
fluid (here we denote this βp which equals for our nondimen-
sional variables βp = 2pp/B2). To understand the magnitude
of this effect, we can make some simple estimates. Because
the temperature of the plasma is determined by that of the
neutral fluid, once the cooling or heating process as a result
of the neutral fluid acting as a sink or source has occurred,
the subsequent evolution can be treated as isothermal (i.e. the
temperature of the plasma is fixed as that of the neutral fluid).
Therefore the ratio of the mean pressure in a layer (〈pp〉1)
against the pressure before contraction (〈pp〉0) will be l0/l1
where l0 is the original layer width and l1 the new width. Due
to flux conservation this will also apply to the magnetic field
giving 〈Bx〉1/〈Bx〉0 = l0/l1. If the temperature has dropped by
a factor of δT, then 〈pp〉= δT p0,p, the contraction of the layer
will be given by the following total pressure in the layer

〈B〉21
2

+ 〈pp〉1 =
〈B〉20

2

(
l0
l1

)2

+ 〈pp〉0
l0
l1

=
〈B〉20

2

(
l0
l1

)2

+δT p0,p
l0
l1
. (24)

Balancing this with the external pressure leads to

〈B〉20
2

((
l0
l1

)2

+δTβp
l0
l1

)
=
〈B〉20

2
(1+βp). (25)

Therefore the change in density (given by conservation of
mass) is given by

〈ρp〉0
〈ρp〉1

=
l1
l0

=
1

2(1+βp)

(
δTβp +

√
δ 2

Tβ 2
p +4(1+βp)

)
,

(26)
where ρ ′ is the new density.

In the βp = 0 limit this ratio just becomes 1, and in the
βp = ∞ limit this ratio becomes δT, i.e. in low βp situations,
the global contraction of the layer will not occur. For the case
in Figure 9 the mean temperature drops by 20 per cent in the
y < 0 region (δT = 0.8), so our simple estimate for the mean
density in this region (around y = −0.01) would be 〈ρp〉 =
0.0175 which is fairly accurate given the actual value is 〈ρp〉=
0.0170.

This explains how the material squeezes in the y direction,
but the remaining question is how large do the fluctuations
along a field line get from this new mean value? The key is
to understand how much mass is transported into the local re-
gions where the pressure is reduced as it cools to match the
neutral temperature, or removed in the regions of higher tem-
perature. For example, to get an average temperature halfway
between the initial temperatures on either side of the discon-
tinuity (as is roughly shown in Figure 9) means that half of

the field line is filled with material that is cooler than it was
originally. As the expansions and contractions are isothermal,
due to the arguments in the previous paragraph, the pressure is
predetermined. Also magnetic effects cannot be important as
these dynamics occur purely along the magnetic field. After
the expansions and contractions along the fieldline, the pres-
sure along the fieldline will be uniform (given by p′) and the
higher density region will occupy half the fieldline (a length
of l′). If the pressure changes are given by:

p′

p1
=

l1
l′
,

p′

p2
=

l2
l′
, (27)

where l1 + l2 = 2l′. Here p1 is the plasma pressure in the
cooled region given by δ2〈pp〉1 where δ2 is given as the ratio
of the temperature of the cooled/heated material to the back-
ground temperature, and p2 = 〈pp〉1. The force balance is
given by

δ2
l1
l′
=

l2
l′
, (28)

which means the density change is

ρ ′p
〈ρp〉1

=
l1
l′
=

1
δ2 +1

. (29)

For the example, for the case shown in Figure 6, where we
know the mean density around y = −0.01 is 〈ρp〉1 ≈ 0.0175,
as δ2 = 2/3 we predict ρ ′1≈ 0.021 in the neutral vortex region,
which tallies with the values shown in the figure. This argu-
ment implies that even when the plasma β is close to zero,
there will still be some response in the plasma density to the
neutral dynamics even when the system is magnetically dom-
inated.

2. The coexistence of scales at different coupling levels

In Figure 7 it is clear that many smaller vortices have
formed as a result of the presence of a cascade of energy. The
energy cascade that creates the smaller scale vortices in this
case is driven by the presence of gradients in the density al-
lowing for a non-zero baroclinic term (∝ ∇ρ ×∇p)23. Here
we investigate to see whether smaller-scale neutral vortices
can have a higher rotation rate, and with it weaker coupling
between the two fluids.

Figure 10 shows a vortex that has formed at t = 19. The
top panel of shows the neutral density. In this panel we have
isolated an example of a large scale vortex that has created a
number of smaller vortices over a range of scales. Two par-
ticular vortices are highlighted (marked V1 and V2 in the top
panel for vortex 1 and vortex 2 respectively) with vortex 2
being a factor of ∼ 50 smaller than the large-scale vortex.

Vortex 1 is less than a tenth of the size of the main vortex.
It shows some of the features of the larger vortex, including
parasitic Kelvin-Helmholtz and Rayleigh-Taylor instabilities
growing on this secondary vortex. The plasma density and
neutral density show similar structure. However, the vortex
itself does not show up clearly in the drift velocity
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FIG. 10. Multiple vortices made through the cascade process from a large vortex seen at t = 19. In the top panel, showing a large scale vortex
in the neutral density two vortices (marked V1 and V2 for vortex 1 and vortex 2 respectively) have been isolated. The middle and bottom rows
show the neutral and plasma densities, and the drift velocity for these two cases.

Vortex 2 is close to the limit where structures can be re-
solved (with only ∼ 30 grid points across it). The vortex as
seen in the plasma density is more diffuse than that of the
neutrals. At these scales no substructure is made in the vor-
tex, but we are seeing a clear signal of the vortex rotation in
the drift velocity.

Figure 11 shows the plot of the neutral vx against y across
each vortex. These slices are taken over the respective y
ranges in the Figure 10 plots for vx,n and are are taken at
x = −0.898590, x = −0.999847 and x = −1.01797, respec-

tively. The vertical dashed lines show the boundaries of the
vortex. A clear velocity gradient is seen in each case.

The slopes of the velocities shown in these plots are roughly
linear. The gradient, a measure of the vorticity, is∼ 1.1 for the
main vortex, ∼ 1.8 for vortex 1 and ∼ 5.1 for vortex 2. If the
vortices were all rotating at the same rate, then these numbers
would be the same, so we are seeing the increase in rotation
rate at smaller scales.

One can roughly estimate how we expect this vorticity to
change for Kolmogorov turbulence The structure function for
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Kolmogorov turbulence is

δvr ∝ r1/3. (30)

Though this is a statistical property of Kolmogorov turbu-
lence, we use this to approximate the expected velocity dif-
ference across the vortex for different scale vortices. This im-
plies that the vorticity measured in each vortex should scale as
r−2/3. This predicts a vorticity of 12.9 for the smallest vortex
(based on the vorticity of the largest vortex). Therefore we
are seeing a system that is somewhere in between these two
regimes, but that is exhibiting evidence of an energy cascade
through the presence of small scales and greater vorticity at
those scales.

As the rotation rate of the vortex is increasing as the scale
gets smaller, this implies that at some scale the neutrals will
decouple from the plasma. The coupling frequency for the
neutrals to the plasma, and with that the frequency to couple to
magnetic field, for the parameters of this simulation is 4.5 (see
Section II C). Therefore, at the scales of the smallest analysed
we are seeing that the neutral fluid motions have become fast
enough to decouple.

3. Power spectra

Investigating the power spectra of the velocity and mag-
netic fields can be a powerful tool for understanding the scales
at which energy is held in these fields from a statistical point
of view. From our reference cases, and the evaluation of the
dynamics in our simulation presented previously, we would
expect that at scales where the neutral fluid is not coupled to
the magnetic field, it will have a spectra similar to that of the
HD reference case. However, if the scales were to get suffi-
ciently large so that coupling of the neutrals to the magnetic
field becomes strong, then spectra closer to those of the refer-
ence MHD calculation may appear.

Figure 12 shows a snapshot of the dynamic spectra taken at
t = 19 at y = 0 for

√
ρnvyn (a), √ρpvyp (b), and By (c). As

these are taken during the dynamic evolution, and not once a
statistical steady state has formed, it is not surprising that there
is no single slope that dominates the whole of the spectra. As
with the HD reference case, the density weighted neutral ve-
locity (shown in panel a) displays three regions. At the largest
scales this appears to be a slope that is greater than k−1, with
an estimate of k−5/3 given possibly fit these. However, the
main regions of the spectra consist of an extended region con-
sistent with a power law with exponent of k−1 and at higher
k approximately following k−2.3. For k larger than ∼ 300 the
plasma velocity spectra and magnetic field spectra diverges
from that of the neutral velocity with a spectra of k−5/3.

The two vertical lines shown in all three panels give approx-
imate scales at which the neutral decouple from the plasma
and with it the magnetic field (dot-dash line) and the scales
at which the plasma decouples from the neutral fluid (dashed
line), justification of these positions is given in Section II C.
Above the dashed line, the spectra behave in similar ways, but
as this scale is reached the density weighted neutral velocity

displays different behaviour, highlighting a dynamic decou-
pling at small scales.

4. frictional heating rate

As well as momentum transfer, the velocity drift term can
provide dissipation in a system. The frictional heating rate is
a second-order term in the velocity difference given by:

HFRIC = αcρnρpv2
D, (31)

which determines the dissipation of energy as a result of ion-
neutral drift, where vD = vn − vp. It is worth noting that
these heating terms are different from the standard dissipa-
tion terms used in studies of turbulent MHD flows, because
unlike Ohmic or viscous heating, they are not dependent on
a second derivative, and do not require small scales in either
the current or flow to be maximised. This means that to have
large heating in a volume it is most effective to have volume
filling structures that have a large velocity drift.

Figure 13 gives the heating rate for different widths of the
KHi layer (W ) calculated for this simulation, and a simula-
tion that looks at more coupled scales presented in Section
III C. Here W is calculated by first measuring the minimum
and maximum y positions where the x averaged neutral den-
sity (〈ρn〉) departs from its initial values either side of y = 0.
Once this initial width has been calculated, it is then widened
to capture all the flow dynamics the instability is creating by
adding half that width again on both sides of the layer. The
plot shows that at small widths the heating rate has an ap-
proximately constant value with width, but above W ≈ 0.1 the
heating rate becomes smaller as W increases.

At the smaller values of the width of the mixing layer,
the heating rate is saturated at ∼ 0.01. An upper bound
for the magnitude of the frictional heating can be given by
αρnρp∆V 2 ≈ 0.18. This means that the actual heating rate is
approximately 6 per cent of the upper bound, which is equiv-
alent to the heating region being filled with velocity drifts that
average at ∼ ∆V/5.

As the width of the mixing layer increases, the system
reaches a point where the neutral fluid dynamics begin to cou-
ple to the magnetic field (approximately given by the vertical
dash-dot line calculated using similar assumptions as those
used in the power spectra). Once coupling begins to take
place, this results in a decrease in the drift velocity, and as
a result the heating rate starts to decrease as the layer width
increases. Based on arguments of strong coupling of the flu-
ids, then it can be expected that the drift velocity would scale
with the Lorentz force, i.e.:

αcρnρpvD = (∇×B)×B. (32)

Therefore, we can estimate the heating rate in this regime to
be:

HFRIC =
((∇×B)×B)2

αcρnρp
∼ B4

(W/C)2
1

αρnρp
. (33)

where C is a constant that is used to approximate the mag-
nitude of the current. This implies that at sufficiently large
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FIG. 11. Slice in the y-direction of the vx component of the neutral velocity across the different vortices presented in Figure 10. The vertical
dashed lines show the approximate extent of the vortex as estimated from the density structure.

FIG. 12. Power spectra for the density weighted neutral y velocity (panel a), density-weighted plasma y velocity (b) and the y component of
the magnetic field at x = 0 (c) all taken at t = 19. with the black line showing the smoothed spectra. The straight lines show the slopes of k
to different exponents used to highlight regions of different behaviour of the different spectra. The vertical dot-dash and dashed line show the
approximate scale for neutral and plasma decoupling respectively (see Section II C).

scales the heating rate can be estimated to scale as HFRIC ∝

W−2. The dashed line in Figure 13 shows the approximate so-
lution in Equation 33 using the values from the simulation and
a constant C = 5 (note that the choice of C will be heavily de-
pendent on the definition used for W ). As can be seen this pro-
vides a reasonable representation of the heating rate at those
scales. This highlights the usefulness of the strong-coupling
approximation at large scales, but the danger of applying it to
dynamics that do not obey that approximation as heating will
be overestimated.

At late times in the high resolution simulation many small
scales have been created (e.g. see Fig. 10). Though the ro-
tation rate of the vorticies at the small scales are larger than
those of the large-scale vortex driving them, they do not gen-
erate large drift velocity. Therefore, their influence on the
efficiency of the dissipation is reduced. Turbulent dissipa-
tion through frictional heating can be discussed in a statisti-
cal sense using k space, power spectral density (E(k)) and the

dissipation spectra (D(k)) where

∂

∂ t
E(k) = D(k). (34)

As such we can understand the change in total kinetic energy
of the system with time as a result of the frictional heating to
be given by:

∂K
∂ t FRIC

=
∫

∞

0

∂

∂ t
E(k)dk =

∫
∞

0
D(k)dk

∝

∫
∞

0
HFRIC(k)dk. (35)

If we assume for sake of argument that E(k) ∝ k−5/3 (i.e.
is consistent with Kolmogorov turbulence) then D(k) =

αρnρpv2
D ∝ k−5/3, so even integrating over k space will lead

to a dependence with k that has an exponent less than zero.
Therefore we expect that the dissipation from frictional heat-
ing will be dominated by the largest scales in the system (un-
like viscous or resistive dissipation). This explains why even
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FIG. 13. The frictional heating rate as a function of the width of
the KHi region W . The red line is calculated for the high resolu-
tion simulation, and the blue line is for the simulation performed at
larger spatial scales that is explained in Section III C. The dashed
line shows a W−2 dependence and the dash-dot line shows the ap-
proximate width where the neutral fluid should begin to couple to
the magnetic field.

in the presence of an energy cascade, the estimates for the
heating in the strong coupling limit given in Equation 33 prove
to be quite accurate even though they only take into account
the largest scales of the dynamics.

C. Coupling at even larger scales

To look at larger scales, we have performed a second two-
fluid simulation, with resolution of 2048 by 1024 over a range
of x = [−15,15] and y = [−7.5,7.5]. This means that though
we are not able to resolve the decoupled scales, we can look at
the way neutral fluids slip across the magnetic field at scales
where the neutral fluid can dynamically feel the magnetic
forces (i.e. we are in a strong coupling regime).

Figure 14 shows a snapshot at t = 150 for the neutral and
plasma densities (with fieldlines in white), and the the magni-
tude of the drift velocity. One key difference between this and
the simulations showing smaller scales is that vortices have
not formed in the neutral fluid and overall the simulation re-
sult looks closer to that of the reference MHD solution than
the reference HD solution. The neutral density shows stria-
tions in the density distribution as a result of drift across the
magnetic field. Though there are similarities between the neu-
tral and plasma density distributions, there is more structure
visible in the plasma density distribution. The drift velocity
distribution also shows an interesting feature, the peak veloc-
ity drift is not at the interface between the two layers but now
there are two regions of high drift just above and below this
interface.

The striations of the neutral density emanate from the peaks
and troughs of the interface, where the neutral fluid appears to
overshoot. They occur because as the fluid on top is com-
ing out of a furrow or the density on the bottom is coming
down from a ridge of the interface, hydrodynamically the fluid
wants to roll these structures over to form a vortex, but the
magnetic field is resisting. As it is a magnetic force that is sup-
pressing this motion, the neutral fluid (which is not perfectly
coupled to the magnetic field), slips across the field lines at
these points and intrudes into the the other density layer as a
thin strip.

It is ion-neutral drift that creates the neutral density struc-
ture, but this is not where the peak drift occurs. In the ref-
erence MHD simulation, the largest deformation of the mag-
netic field occurred above and below the interface, so in our
strongly coupled two-fluid system, this is naturally the place
where the largest velocity drift occurs. As the neutral density
is constant in these regions, and the instability is only weakly
compressible, this cannot be seen in the neutral density. For
the component of the flow along the magnetic field the plasma
can more follow the neutral fluid, but not across the magnetic
field. This creates compressible motions in the plasma creat-
ing density changes via compressional field-aligned flows in
regions of high neutral drift.

Figure 15 shows the density-weighted y velocity compo-
nent for the neutrals (panel a) and the plasma (panel b), as
well as By (panel c). The slope of the spectra is flat over many
wavelengths (as the instability hasn’t reached the stage where
the largest mode is dominating). At smaller scales a slope
approximately consistent with k−2 is present. Though this is
only clear over a smaller region of the spectra, this slope is
consistent with what was seen in the reference MHD solution.
The magnitudes in the power spectral density for the density
weighted neutral y velocity component are an order of magni-
tude larger than those found for the density weighted plasma y
velocity and the By magnetic field. The dot-dash line shows an
approximation of the scale the neutrals will decouple from the
magnetic field, but no change in the spectra is obvious around
this region.

IV. CONCLUSIONS

In this paper we have investigated the interaction between
the neutral and plasma fluids in the nonlinear stage of the
Kelvin–Helmholtz instability. What we have found is that:
if dynamics are sufficiently high frequency then all the com-
plex motions are occurring in the neutral fluid. However, as
the instability dynamics occurs at progressively larger scales,
the fluids became progressively more coupled together. This
increase in coupling results in the magnetic field being able to
indirectly exert a force on the neutral fluid, resulting in a flat-
tening of the vortices. Once the large-scale vortices form, as
part of the energy cascade that develops, motions at decoupled
scales are also driven in the system.

At scales where the neutral dynamics are decoupled from
the magnetic field, fully-formed neutral vortices are present.
The plasma velocity field does not have this response. Though
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FIG. 14. Snapshot of the simulated densities (top panel for ρn and middle panel for ρp) and magnitude of the drift velocity (bottom panel) at
t = 150. The white lines in the middle panel show the magnetic field lines.

the velocity structure decouples, the density structures of the
two fluids is coupled for dynamic frequencies below the ion-
neutral collision frequency as a result of the heating and cool-
ing of the plasma by the thermal terms in the energy equa-
tions. For higher frequency dynamics not only the flow but
also the temperature become decoupled removing this effect.
This density coupling effect can be shown to occur even for
very low plasma β as it partly involves compression and ex-
pansion along the magnetic field. At the scales where the neu-
tral flow is decoupled from the magnetic field, the frictional
heating is independent of the mixing layer thickness. Above
that scale the heating scales as W−2. This highlights how am-
bipolar diffusion would overestimate heating rates for dynam-
ics below the strong coupling scale.

Even at the point where large scale vortices have formed
and the neutral fluid is beginning to couple with the mag-
netic field, the smaller vortices they produce can become de-
coupled. This means that at as part of a KHi turbulence en-
ergy cascade, when scales where the neutrals have decoupled
from the magnetic field are reached, fully-developed, purely-
hydrodynamic turbulence can exist and contain the majority
of the energy of the cascade. One important consequence of
this work is that in an energy cascade in MHD, when motions
reach these high frequencies it is likely that a transition from
MHD turbulence in the coupled fluids to the neutral fluid pos-
sessing its own turbulent cascade will develop. In terms of the
dissipation effects in two-fluids, however, it will always be
the larger scales that contribute more, meaning that the devel-
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FIG. 15. Power spectra taken at y = 0 for the density weighted neutral y velocity (panel a), density-weighted plasma y velocity (b) and the y
component of the magnetic field (c) at t = 150. with the black line showing the smoothed spectra. The straight lines show the slopes of k to
different exponents used to highlight regions of different behaviour of the different spectra.

opment of a purely neutral fluid energy cascade will require
viscosity to dissipate the energy in the neutral cascade.

An important corollary that comes from this work, appli-
cable equally to purely MHD systems and PIP systems, is to
do with the role of magnetic fields in the nonlinear saturation
of the instability. In terms of having this instability be dy-
namically important, it is necessary to go beyond whether the
system is linearly unstable, and look at how the nonlinear sat-
uration of the instability will behave at the scales of interest.
This has been seen in previous studies24, and here we have ex-
tended this idea by showing that the linear stability problem
can be used as a good tool to estimate the nonlinear regime
the simulation enters.
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