82 research outputs found

    Understanding Consumer Financial Services Transactions in Japan: A Consumer Logistics Framework

    Get PDF

    A Case of Multicentric Castleman's Disease Having Lung Lesion Successfully Treated with Humanized Anti-interleukin-6 Receptor Antibody, Tocilizumab

    Get PDF
    This report presents the case of a patient demonstrating multicentric Castleman's disease (MCD) with a lung lesion that was successfully treated with an anti-interleukin-6 receptor antibody, tocilizumab in combination with corticosteroid and tacrolimus. A 43-yr-old female with abnormal shadows on a chest X-ray was referred to the hospital for further examination. She was diagnosed as having MCD based on the characteristic pathology of inguinal lymph node, lung lesions, laboratory data, and undifferentiated arthritis. Corticosteroid and rituximab therapy did not fully ameliorate the symptoms; thus, the therapeutic regimen was changed to include tocilizumab, oral corticosteroid and tacrolimus. This regimen resulted in clinical remission and the dose of tocilizumab and corticosteroid could be tapered. Tocilizumab in combination with corticosteroid and tacrolimus may therefore be a beneficial treatment regimen for lung lesions associated with MCD

    Gamma-polyglutamic acid-coated vectors for effective and safe gene therapy.

    Get PDF
    In the present study, we developed some novel gene delivery vectors, coated cationic complexes with gamma-polyglutamic acid (gamma-PGA) for effective and safe gene therapy. Cationic complexes were constructed with pDNA and cationic vectors, such as poly-L-arginine hydrochloride (PLA), poly-L-lysine hydrobromide (PLL), N-[1-(2, 3-dioleyloxy) propyl]-N, N, N-trimethylammonium chloride (DOTMA)-cholesterol (Chol) liposomes, and DOTMA-dioleylphosphatidylethanolamine (DOPE) liposomes. The cationic complexes showed high gene expression with strong cytotoxicity in melanoma B16-F10 cells. The cationic complexes were also strongly toxic to erythrocytes. On the other hand, the gamma-PGA was able to coat all cationic complexes and form stable nano-sized particles with negative charges. These gamma-PGA-coated complexes had high gene expression without cytotoxicity and toxicities to the erythrocytes. In in vivo transfection experiments, polyplexes showed high transfection efficiency over 10(5) RLU/g in the lung tissue after intravenous injection, although gamma-PGA-coated polyplexes showed a high value in the spleen. High transfection efficiency in lipoplexes and gamma-PGA-coated lipoplexes was observed in the spleen and lung. Thus, gamma-PGA-coated vectors are useful for clinical gene therapy

    Secure and effective gene delivery system of plasmid DNA coated by polynucleotide

    Get PDF
    Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system

    Characterization of sulfur-compound metabolism underlying wax-ester fermentation in Euglena gracilis

    Get PDF
    Euglena gracilis is a microalga, which has been used as a model organism for decades. Recent technological advances have enabled mass cultivation of this species for industrial applications such as feedstock in nutritional foods and cosmetics. E. gracilis degrades its storage polysaccharide (paramylon) under hypoxic conditions for energy acquisition by an oxygen-independent process and accumulates high amount of wax-ester as a by-product. Using this sequence of reactions referred to as wax-ester fermentation, E. gracilis is studied for its application in biofuel production. Although the wax-ester production pathway is well characterized, little is known regarding the biochemical reactions underlying the main metabolic route, especially, the existence of an unknown sulfur-compound metabolism implied by the nasty odor generation accompanying the wax-ester fermentation. In this study, we show sulfur-metabolomics of E. gracilis in aerobic and hypoxic conditions, to reveal the biochemical reactions that occur during wax-ester synthesis. Our results helped us in identifying hydrogen sulfide (H2S) as the nasty odor-producing component in wax-ester fermentation. In addition, the results indicate that glutathione and protein degrades during hypoxia, whereas cysteine, methionine, and their metabolites increase in the cells. This indicates that this shift of abundance in sulfur compounds is the cause of H2S synthesis

    Neointimal characteristics comparison between biodegradable-polymer and durable-polymer drug-eluting stents: 3-month follow-up optical coherence tomography light property analysis from the RESTORE registry

    Get PDF
    We aimed to quantitatively assess a possible difference of the neointimal quality between biodegradable polymer- (BP-) and durable polymer drug-eluting stents (DP-DESs). We conducted a single-center all-comer prospective cohort study: the RESTORE registry (UMIN000033009). All patients who received successful OCT examination at planned 3-month follow-up after DES implantation were analyzed. Study population was divided into 2 groups, BP-DES versus DP-DES groups. We evaluated standard OCT variables, coverage percent, and the quantitative light property values including light intensity, attenuation, and backscatter. We performed OCT analyses of 121 lesions in 98 patients (BP-DES 55 lesions in 51 patients vs. DP-DES 66 lesions in DP-DES 53 patients). Lesion and procedural characteristics were overall well-balanced between both groups. At 3-month follow-up, neointimal thickness (BP-DES 49.3 [38.2, 57.7] µm versus DP-DES 54.7 [45.1, 70.7] µm, p = 0.059) and coverage percent (BP-DES 94.5 [89.8, 97.0]% vs. DP-DES 95.8 [91.1, 98.1]%, p = 0.083) did not significantly differ. Light intensity of superficial neointima in the BP-DES was lower than that in the DP-DES, whereas that of deep neointima did not differ between both groups

    Biodegradable nanoparticles composed of dendrigraft poly-l-lysine for gene delivery

    Get PDF
    We developed novel gene vectors composed of dendrigraft poly-l-lysine (DGL). The transgene expression efficiency of the pDNA/DGL complexes (DGL complexes) was markedly higher than that of the control pDNA/poly-l-lysine complex. However, the DGL complexes caused cytotoxicity and erythrocyte agglutination at high doses. Therefore, Îł-polyglutamic acid (Îł-PGA), which is a biodegradable anionic polymer, was added to the DGL complexes to decrease their toxicity. The resultant ternary complexes (DGL/Îł-PGA complexes) were shown to be stable nanoparticles, and those with Îł-PGA to pDNA charge ratios of >8 had anionic surface charges. The transgene expression efficiency of the DGL/Îł-PGA complexes was similar to that of the DGL complexes; however, they exhibited lower cytotoxicity and did not induce erythrocyte agglutination at high doses. After being intravenously administered to mice, the DGL6 complex demonstrated high transfection efficiency in the liver, lungs, and spleen, whereas the DGL6/Îł-PGA8 complex only displayed high transfection efficiency in the spleen. Future studies should examine the utility of DGL and DGL/Îł-PGA complexes for clinical gene therapy

    Development of Effective Cancer Vaccine Using Targeting System of Antigen Protein to APCs.

    Get PDF
    PURPOSE: To develop a novel cancer vaccine using the targeting system of antigen protein to antigen-presenting cells (APCs) for efficient and safe cancer therapy. METHODS: The novel delivery system was constructed with antigen protein, benzalkonium chloride (BK), and Îł-polyglutamic acid (Îł-PGA), using ovalbumin (OVA) as a model antigen protein and evaluating its immune induction effects and utilities for cancer vaccine. RESULTS: BK and Îł-PGA enabled encapsulation of OVA and formed stable anionic particles at nanoscale, OVA/BK/Îł-PGA complex. Complex was taken up by dendritic cell line DC2.4 cells efficiently. We subcutaneously administered the complex to mice and examined induction of IgGs. The complex induced not only Th2-type immunoglobulins but also Th1-type immunoglobulins. OVA/BK/Îł-PGA complex inhibited tumor growth of E.G7 cells expressing OVA regularly; administered OVA/BK/Îł-PGA complex completely rejected tumor cells. CONCLUSION: The novel vaccine could be platform technology for a cancer vaccine
    • …
    corecore