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Abstract

Background: Cyclic phosphatidic acid (cPA) has an inhibitory effect on the autotaxin (ATX)/lysophosphatidic acid
(LPA) axis, which has been implicated to play an important role in the progression of fibrosis in systemic sclerosis
(SSc). The purpose of this study is to assess the antifibrotic activity of cPA for the treatment of SSc using SSc skin
fibroblasts and an animal model of bleomycin-induced skin fibrosis.

Methods: We used a chemically stable derivative of cPA (2ccPA). First, we investigated the effect of 2ccPA on
extracellular matrix (ECM) expression in skin fibroblasts. Next, the effect of 2ccPA on the intracellular cAMP levels
was determined to investigate the mechanisms of the antifibrotic activity of 2ccPA. Finally, we administered 2ccPA
to bleomycin-induced SSc model mice to evaluate whether 2ccPA prevented the progression of skin fibrosis.

Results: 2ccPA decreased ECM expression in SSc skin fibroblasts and TGF-β1-treated healthy skin fibroblasts without
LPA stimulation. 2ccPA increased the intracellular cAMP levels in skin fibroblasts, suggesting that the antifibrotic
effect of 2ccPA was the consequence of the increase in the intracellular cAMP levels. Administration of 2ccPA also
ameliorated the progression of bleomycin-induced skin fibrosis in mice.

Conclusions: Our data indicated that 2ccPA had inhibitory effects on the progression of skin fibrosis by abrogating
ECM production from activated skin fibroblasts. These cells were repressed, at least in part, by increased intracellular
cAMP levels. 2ccPA may be able to be used to treat fibrotic lesions in SSc.
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Background
Systemic sclerosis (SSc) is a systemic connective tissue
disease with excessive fibrosis and vascular malformation
based on autoimmunity [1–3]. Progressive fibrosis,
which affects vital organs, such as the lungs and the
gastrointestinal tract, is sometimes fatal or severely im-
pairs quality of life [4]. Fibrosis of the skin, namely,
scleroderma, is a major therapeutic target of SSc. Several
molecules, such as transforming growth factor-β
(TGF-β) and platelet-derived growth factor (PDGF), have
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been reported to be closely associated with the progres-
sion of fibrosis [1–3, 5–7]. However, treatments includ-
ing blocking agents of these molecules have not
previously been established because of their limited
therapeutic effects and/or severe adverse events [5–7].
An autotaxin (ATX)/lysophosphatidic acid (LPA) axis

has emerged as a novel pathogenic factor in various dis-
eases, including fibrosing disorder [8–10]. ATX is a se-
creted form of lysophospholipase D. One of the major
properties of ATX is LPA production via cleavage of the
choline group from lysophosphatidylcholine (LPC) [10].
LPA binds to six specific G protein-coupled receptors
(GPCRs) (LPA1–6) and intracellular PPARγ [11, 12]. LPA
is known to regulate several cellular properties,
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including survival, proliferation, differentiation, and mo-
tility [8–10]. These physiological features have been im-
plicated in the pathogenesis of conditions such as
autoimmunity, fibrosis, cancer, and inflammation; thus,
LPA has been identified as a therapeutic target in vari-
ous intractable diseases [11, 12]. Among LPA receptors,
the LPA1-dependent cellular pathway has been particu-
larly well studied for the treatment of fibrosis and LPA1

antagonists have entered phase II clinical trials for the
treatment of idiopathic pulmonary fibrosis and other
fibrogenic conditions [13]. The serum levels of
2-arachidonoyl-LPA (also referred to as S1P) in the sera
of SSc patients were elevated, and skin fibroblasts ob-
tained from affected areas of SSc patients had more Cl−

current activated by LPA and S1P, which play critical
roles in myofibroblast differentiation [14, 15]. In animal
models, LPA1 knockout mice showed less extensive skin
fibrosis in bleomycin-induced skin fibrosis [16].
Cyclic phosphatidic acid (cPA) is a naturally occurring

lipid mediator that was first isolated from a slime mold
[17]. cPA also exists in human sera. Similar to LPA, cPA
is catalyzed by ATX; however, cPA has several distinct
activities from LPA due to the presence of cyclic phos-
phates at the sn-2 and sn-3 portions of its glycerol carbons
[17]. Moreover, cPA has been reported to have an antagon-
izing effect on the ATX/LPA axis. Although cPA is rapidly
catalyzed, the 2-carba derivative of cPA (2ccPA) is stable in
humans and is expected to be used in various clinical set-
tings [17–19]. From these findings, we hypothesized that
cPA has antifibrotic effects on SSc. Herein, we found that
2ccPA inhibited the production of type I collagen and other
fibrotic molecules in SSc skin fibroblasts and
TGF-β-treated healthy skin fibroblasts. Furthermore, 2ccPA
also prevented the progression of bleomycin-induced skin
fibrosis in mice. These findings suggest that 2ccPA may be
effective for the treatment of fibrotic lesions of the skin and
other internal organs in SSc.

Methods
Skin fibroblasts
SSc skin fibroblasts were obtained from lesional areas of
the forearms of SSc patients. The diagnosis of SSc was
based on the 2013 ACR/EULAR classification criteria for
SSc [20]. All patients were diffuse cutaneous type posi-
tive for anti-topoisomerase I antibodies and had never
received an immunosuppressive treatment. This study
was approved by the ethics committee of Tokyo
Women’s Medical University. We informed all partici-
pants of the contents of this study, and written consent
was obtained. Healthy adult skin fibroblasts were pur-
chased (Lonza, Basel, Switzerland; Kurabo, Osaka,
Japan). Skin fibroblasts used in the experiment were up
to five passages. Skin fibroblasts were incubated with
Dulbecco’s modified Eagle’s medium (Hyclone, Logan,
UT, USA) supplemented with 10% fetal calf serum (Sig-
ma-Aldrich, St. Louis, MO, USA) at 37 °C as previously
described [21]. Subconfluent fibroblasts were cultured in
serum-free DMEM for 24 h. After serum starvation, fi-
broblasts were incubated with various concentrations of
2ccPA (SANSHO, Tokyo, Japan) and forskolin (MP Bio-
medicals, Santa Ana, CA, USA) in the presence or ab-
sence of LPA (Sigma-Aldrich) or TGF-β1 (R&D Systems,
Minneapolis, MN, USA).

Cell viability
Cell viability was calculated using a Cell Counting Kit 8
(Dojindo, Kumamoto, Japan) according to the manufac-
turer’s instructions.

Quantitative real-time reverse transcription-polymerase
chain reaction
Total RNA contained in skin fibroblasts was collected using
a commercially available kit (Life Technologies, Carlsbad,
CA, USA). Equal amounts of total RNA were
reverse-transcribed to synthesize cDNA using a SuperScript
VILO cDNA Synthesis kit (Thermo Fisher Scientific, Wal-
tham, MA, USA) according to the manufacturer’s instruc-
tions. TaqMan primers (Thermo Fisher Scientific) were
used in our experiments. cDNA was mixed with a master
mix (Thermo Fisher Scientific), and each primer was then
applied to a plate in triplicate. DNA was amplified on a
ViiA 7 Real-time PCR system (Thermo Fisher Scientific).
The TaqMan primer and probe sets used in our experiment
were as follows: Hs00164004_m1 (COL1A1),
Hs00164099_m1 (COL1A2), Hs00171257_g1 (CTGF),
Hs00426835_g1 (ACTA2), Hs00365052_m1 (FN),
Hs00171257_m1 (TGF-β1), and Hs00174131_m1 (IL-6).
GAPDH was used as the endogenous control, and the ex-
pression level of each mRNA was calculated using the
delta-delta CT method. We performed at least three inde-
pendent experiments for qPCR analysis.

Western blotting
Cultured skin fibroblasts were lysed with lysis buffer.
The concentration of proteins in the lysis buffer was cal-
culated using the BCA assay. Equal amounts of protein
were applied in Tris-glycine gel (Thermo Fisher Scien-
tific), and proteins were separated by SDS-PAGE. Gels
were transferred onto polyvinylidene fluoride (PVDF)
membranes, and the membranes were then blocked with
5% nonfat milk in TBS-T for 1 h at room temperature.
The membranes were incubated with primary antibodies
overnight at 4 °C. The primary antibodies were as fol-
lows: unlabeled goat anti-type I collagen antibodies
(1310-01) (1:1000, Southern Biotechnology, Birmingham,
AL, USA), polyclonal goat anti-CTGF antibodies
(sc-14939) (1:1000; Santa Cruz Biotechnology, Santa
Cruz, CA, USA) [22], rabbit anti-αSMA antibodies
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(14968 s) (1:250; Cell Signaling Technologies, Denver,
MA, USA), and polyclonal rabbit anti-GAPDH anti-
bodies (sc-25778) (1:1000; Santa Cruz Biotechnology).
After washing with TBS-T three times, the membranes
were incubated with polyclonal rabbit anti-goat (MBL
546) and polyclonal goat anti-rabbit (MBL 458) second-
ary antibodies (1:500,000; Medical & Biological Labora-
tories, Nagoya, Aichi, Japan). The bands were visualized
using an ECL solution (Wako, Osaka, Japan). The dens-
ity of the bands was calculated using ImageJ software
(NIH, Bethesda, MD, USA).

Cyclic AMP (cAMP) measurement
Fifteen minutes prior to cell lysate collection, cells were
treated with 3-isobutyl-1-methylxanthine (IBMX) to elim-
inate the effects of endogenous PDE activities. The intra-
cellular cAMP levels were then assessed using an enzyme
immunoassay kit (Cayman Chemical, Ann Arbor, MI,
USA) according to the manufacturer’s instructions.

Procollagen type I measurement
The levels of procollagen type I were measured using a
commercially available enzyme immunoassay kit (Takara
Bio, Kusatsu, Shiga, Japan) according to the manufac-
turer’s instructions.

Mice
Six-week-old female BALB/c mice (Sankyo Labo Service,
Tokyo, Japan) were used in our experiment [23]. To de-
velop bleomycin-induced skin fibrosis, mice were shaved
on their backs and subcutaneously injected with 300 μg of
bleomycin (1mg/ml dissolved in PBS) (Nihon Kayaku,
Tokyo, Japan) five times per week for 4 weeks as previously
described [24, 25]. An equal amount of PBS was subcutane-
ously injected into control mice. In 2ccPA-treated mice, the
indicated amounts of 2ccPA (dissolved in PBS at a concen-
tration of 1mg/ml or 100 μg/ml) were intraperitoneally ad-
ministered concurrently with bleomycin to assess the
preventive effect on skin fibrosis. In control mice, an equal
amount of PBS was intraperitoneally injected. After com-
pleting the protocol, the back skin was removed. The skin
was fixed in 10% formaldehyde and embedded in paraffin.
All experimental protocols were approved by the Ethical
Review Committee of Animal Experiments, Tokyo
Women’s Medical University.

Assessment of dermal thickness
The slides were stained with Masson’s trichrome stain-
ing. The distance between the epidermal-dermal junc-
tion to the dermal-fat junction was measured for the
assessment of the dermal thickness. The average of the
dermal thickness of five randomly selected different
fields at an equal magnification (× 100) was calculated
according to a previous study [26].
Immunohistochemistry
The sections were deparaffinized and incubated with cit-
rate buffer (pH 9.0) at 95 °C for 20 min, and the sections
were then incubated with 3% H2O2 and blocked with 5%
nonfat milk in PBS. The samples were reacted with poly-
clonal rabbit anti-αSMA antibodies (ab5694) (1:2000;
Abcam, Cambridge, UK) at 4% overnight. Antibodies
were visualized using an anti-rabbit DAKO EnVision
horseradish peroxidase system (DAKO, Carpinteria, CA,
USA). The sections were developed with 3,3′-diamino-
benzidine tetrahydrochloride dihydrate and counter-
stained with hematoxylin. Finally, we counted the
average number of αSMA-positive cells in the dermis of
five randomly selected different fields at an equal magni-
fication (× 100) according to previous reports [27].

Collagen content
Equal areas of skin were collected from the mice using a
6-mm-diameter biopsy punch (KAI industries, Seki,
Gifu, Japan). Skin samples were quantified using a
QuickZyme total collagen assay (QuickZyme Biosci-
ences, Leiden, Netherlands) according to the manufac-
turer’s instructions.

Statistical analysis
Data were analyzed using JMP and R version 3.5.2 [28].
Statistical analyses were performed using one-way
ANOVA followed by Student’s t test for normally dis-
tributed data or the Mann-Whitney U test for
non-normally distributed data. p value < 0.05 was con-
sidered statistically significant.

Results
2ccPA suppressed the production of extracellular matrix
molecules in healthy skin fibroblasts
First, we tested the viability of 2ccPA in SSc skin fibro-
blasts. Overall, 1–10 μM 2ccPA did not affect the viabil-
ity of SSc skin fibroblasts at 48 and 72 h after 2ccPA
administration (Fig. 1); a similar result was obtained in
normal skin fibroblasts (data not shown).
The ATX/LPA/IL-6 autocrine loop has been reported

to be a potential driver of the fibrogenic phenotype in
SSc [29]. First, we determined the fibrogenic potential of
LPA in skin fibroblasts. In line with a previous report,
LPA treatment increased the mRNA expression levels of
CTGF and IL-6 in the healthy and SSc skin fibroblasts at
6 h after LPA treatment (Fig. 2), whereas the COL1A1
and COL1A2 mRNA expression levels were not affected
by LPA up to 48 h (data not shown). We subsequently
assessed our hypothesis that 2ccPA might interfere with
the ATX/LPA autocrine loop. However, CTGF and IL-6
mRNA expression in LPA-driven fibrogenic skin fibro-
blasts was not downregulated by 2ccPA treatment
(Fig. 2). We then tested the inhibitory effect of 2ccPA on



Fig. 1 Viability of skin fibroblasts in various concentrations of 2ccPA. Skin fibroblasts derived from three different SSc patients were incubated with 1–
100 μM 2ccPA for 48 and 72 h. Phosphate-buffered saline (PBS) was added in the 0 μM 2ccPA group. Cell viability was measured using a commercially
available cell proliferation measurement kit (Dojindo, Japan). The bars represent as median with interquartile range (IQR). n.s., not significant; *p < 0.05
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extracellular matrix (ECM) production in other fibrotic
situations. To investigate the effect of 2ccPA on acti-
vated skin fibroblasts in response to TGF-β1, healthy
skin fibroblasts were treated with 2ccPA in the presence
or absence of 10 ng/mL TGF-β1. Similarly, 2ccPA down-
regulated the mRNA expression levels of ECM mole-
cules, including COL1A1, COL1A2, CTGF, and ACTA2,
in healthy skin fibroblasts incubated with TGF-β1
(Fig. 3a). To investigate the antifibrotic properties of
2ccPA at the protein level, we performed Western blot
analysis. As expected, 2ccPA decreased the protein ex-
pression levels of type I collagen, CCN2 and αSMA in
healthy skin fibroblasts treated with TGF-β1 (Fig. 3b).
Collectively, 2ccPA demonstrated an inhibitory effect of
ECM production in skin fibroblasts, regardless of the
ATX/LPA axis.
Fig. 2 2ccPA did not interfere with the upregulation of LPA-driven profibro
incubated with 30 μM LPA in the presence or absence of 10 μM 2ccPA for
determined by qPCR. Data are the representative of three independent exp
2ccPA ameliorated the fibrotic phenotype of SSc skin
fibroblasts
To further investigate the inhibitory effect of ECM pro-
duction on SSc skin fibroblasts, we cultured SSc skin fi-
broblasts with 2ccPA. Consistent with the results in
healthy skin fibroblasts, 2ccPA downregulated the ex-
pression levels of profibrotic mRNA in SSc skin fibro-
blasts in a dose-dependent manner (Fig. 4a).
Furthermore, we assessed the time course of mRNA ex-
pression in response to the 2ccPA treatment. The antifi-
brotic effect of 2ccPA on SSc skin fibroblasts assessed by
qPCR was detectable up to 48 h after treatment (Fig. 4b).
Similarly, Western blot analysis indicated that 2ccPA de-
creased the protein expression levels of ECM compo-
nents in SSc skin fibroblasts (Fig. 4c). The procollagen
levels in the supernatant of 2ccPA-treated SSc skin
tic markers in SSc skin fibroblasts. SSc skin fibroblasts (n = 5) were
6 h. The expression of COL1A1, COL1A2, CTGF, and IL-6 mRNA were
eriments. The bars represent as median with IQR. *p < 0.05



Fig. 3 2ccPA inhibited the upregulation of profibrotic markers in normal skin fibroblasts stimulated with TGF-β1. Normal skin fibroblasts (n = 3)
were incubated with or without 10 μM 2ccPA in the presence or absence of 10 ng/mL TGF-β1 for 48 h. a The expression of COL1A1, COL1A2,
CTGF, and ACTA2 mRNA were determined by qPCR. b Normal skin fibroblasts (n = 3) were incubated with 10 μM 2ccPA in the presence or
absence of 10 ng/mL TGF-β1 for 72 h. The protein expression of type I collagen and CCN2 in cell lysates of normal skin fibroblasts were assessed
with Western blotting. Data are the representative of three independent experiments. The bars represent as median with IQR. *p < 0.05
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fibroblasts were not significantly lower than that of the
no treatment group (Fig. 4c). Furthermore, we specu-
lated that 2ccPA may stimulate the production of antifi-
brotic agents in skin fibroblasts. Hepatocyte growth
factor (HGF) and prostaglandin E2 (PGE2) have been re-
ported to have an antifibrotic potential via the inhibition
of myofibroblast differentiation [30–32]. Therefore, we
calculated the HGF and PGE2 levels in a cultured
medium in SSc skin fibroblasts. Consistent with our hy-
pothesis, the HGF and PGE2 levels were significantly
higher in the 2ccPA-treated group than in the untreated
group (Fig. 4d). Taken together, 2ccPA could diminish
the fibrotic activity of SSc-derived fibroblasts.

The antifibrotic activity of 2ccPA was partly dependent
on the intracellular cAMP levels
Both 2ccPA and PGE2 have been shown to increase the
intracellular cAMP levels in fibrogenic cells, such as
mesangial cells in the kidney and copper cells in the
liver, along with skin fibroblasts [33]. Furthermore, in-
creased intracellular cAMP levels have been reported to
regulate the fibrogenic environment in tissues. Thus, we
hypothesized that 2ccPA prevented the production of
ECM molecules in skin fibroblasts by regulating intracel-
lular cAMP levels. To confirm this hypothesis, we ana-
lyzed the intracellular cAMP levels of SSc skin
fibroblasts using a commercially available kit. In line
with our hypothesis, 2ccPA significantly increased the
intracellular cAMP levels in a dose-dependent manner
(Fig. 5a). Furthermore, to test whether the increased
intracellular cAMP levels could alter the fibrogenic
phenotype of SSc skin fibroblasts, we incubated SSc skin
fibroblasts with or without 10 μM forskolin, a direct
stimulator of adenylate cyclase (AC). As expected, for-
skolin decreased the mRNA expression levels of
COL1A1, COL1A2, CTGF, and ACTA2 in SSc skin fibro-
blasts (Fig. 5b). Collectively, 2ccPA diminished the pro-
duction of ECM components in SSc skin fibroblasts, at
least in part, by increasing the intracellular cAMP levels.

2ccPA prevented the progression of bleomycin-induced
skin fibrosis in mice
To further investigate the antifibrotic effect of 2ccPA,
we used a mouse model of bleomycin-induced skin fi-
brosis. Mice were injected with PBS or 300 μg of bleo-
mycin subcutaneously on their back 5 days per week for
4 weeks, and in the 2ccPA-treated group, mice were in-
traperitoneally injected with 2ccPA concurrent with a
bleomycin inoculation. In 2ccPA-treated mice, no side
effects were identified, and their body weights were not
significantly reduced compared with bleomycin-treated
mice. The skin thickness in the areas of



Fig. 4 The antifibrotic effect of 2ccPA on SSc skin fibroblasts. a SSc skin fibroblasts (n = 5) were incubated with 0–10 μM 2ccPA for 48 h. The
expression of COL1A1, COL1A2, CTGF, and ACTA2 mRNA was calculated by qPCR. b Time course expression of profibrotic markers in SSc skin
fibroblasts (n = 5) treated with 2ccPA. SSc skin fibroblasts were incubated with 10 μM 2ccPA for 6–48 h. The expression of COL1A1, COL1A2, ACTA2,
fibronectin (FN), and TGF-β1 mRNA was calculated by qPCR, and the amount of expression was compared with that of no treatment group. c The
expression of type I collagen and CCN2 in cell lysates of SSc skin fibroblasts (n = 3) treated with 2ccPA. SSc skin fibroblasts were incubated with
0–10 μM 2ccPA for 48 h. The protein expression of cell lysates was detected by Western blotting. To calculate the levels of procollagen type I in
the medium, SSc skin fibroblasts (n = 8) were incubated with 0–10 μM 2ccPA for 72 h and cultured medium were assessed using a commercially
available enzyme immunoassay kit. d SSc skin fibroblasts (n = 8) were incubated with 10 μM 2ccPA for 24 h. PGE2 and HGF levels in the cultured
medium were calculated by commercially available enzyme-linked immunosorbent assay kits. The bars represent as median with IQR in a–c. Data
are the representative of three independent experiments in a–c. Bars represent the mean ± standard deviation (SD) in d. *p < 0.05
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bleomycin-induced skin fibrosis was significantly lower
in the 2ccPA-treated group than in the no treatment
group (Fig. 6b). Similarly, the collagen contents were re-
duced by 22.5% in the 1 mg/kg/day 2ccPA treatment
group (not significant) and 32% in the 10 mg/kg/day
2ccPA treatment group (p < 0.05) compared with
bleomycin-induced skin fibrosis (Fig. 6a, b). Similarly,
the myofibroblast count, assessed by αSMA immuno-
staining, was reduced by 45% in the 10 mg/kg/day 2ccPA
treatment group (p < 0.05) (Fig. 6b). Collectively, 2ccPA
also exerted antifibrogenic effects in vivo.

Discussion
Herein, we demonstrated the antifibrotic effect of 2ccPA
on skin fibrosis. 2ccPA decreased the expression levels
of LPA-driven CTGF and IL-6 mRNAs in skin fibro-
blasts. Furthermore, we found that 2ccPA had direct ef-
fects on SSc skin fibroblasts to diminish the production
of ECM molecules and on normal skin fibroblasts stimu-
lated with TGF-β1. 2ccPA also elevated the levels of the
antifibrogenic factors HGF and PGE2 in the culture
medium of SSc skin fibroblasts. We further showed the
preventive effect of 2ccPA on the development of
bleomycin-induced skin fibrosis in mice.
Although the physiological activity of 2ccPA was not

fully elucidated, inhibition of the growth and metastasis
of cancer cells, survival and neurogenic pain and promo-
tion of nerve cell differentiation, pain relief, and hyalur-
onic acid synthesis have been reported and expected for
clinical use [18]. These properties are supported by the



Fig. 5 2ccPA regulated the fibrogenic environment in part by increasing intracellular cAMP levels in SSc skin fibroblasts. a SSc skin fibroblasts
(n = 5) were incubated with either 0–10 μM 2ccPA for 30 min in the presence of 3-isobuthyl-1-methylxanthine. Onemicromolar of forskolin was
administrated in SSc skin fibroblasts (n = 3) as a positive control. The intracellular cAMP levels were assessed using an enzyme immunoassay kit.
b Profibrotic markers were downregulated by increasing intracellular cAMP levels in SSc skin fibroblasts. SSc skin fibroblasts (n = 5) were
incubated in the presence of 0–10 μM forskolin for 48 h. COL1A1, COL1A2, CTGF, and ACTA2 mRNA was assessed by qPCR. Data are the
representative of three independent experiments. The bars represent as median with IQR. *p < 0.05
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intrinsic biological properties of cPA, including antimi-
togenic regulation of the cell cycle, stress fiber forma-
tion, inhibition of platelet aggregation, Cl− current
activation, neuron overgrowth and survival enhance-
ment, and mobilization of intracellular calcium [17, 18,
33]. In particular, we focused on intracellular cAMP ele-
vation because intracellular cAMP levels have been im-
plicated to regulate the fibrogenic status and
intracellular cAMP-elevating agents can ameliorate fi-
brosis. The reported antifibrotic actions of cAMP are as
follows: inhibition of the formation and action of profi-
brotic growth factors, inhibition of fibroblast formation,
inhibition of myofibroblast conversion, initiation of
fibroblast cell death, and inhibition of ECM production
[34–36]. It is noteworthy that cyclosporine may improve
focal segmental glomerulosclerosis by increasing intra-
cellular cAMP levels in addition to its direct inhibitory
effects on cells such as T cells and podocytes [37, 38].
According to our hypothesis, 2ccPA treatment increased
the intracellular cAMP levels in skin fibroblasts. Intra-
cellular cAMP levels are mainly elevated by AC stimula-
tion and decreased by PDE [39]. 2ccPA binds to the LPA
receptor. The LPA4 receptor is unique to other LPA re-
ceptors and only shares 20–24% amino acid sequence
identity with LPA1 [17, 40–42]. Stimulation of LPA4 cou-
ples the Gs subunit and thus activates AC, whereas
LPA1 and LPA3 signaling inhibits AC activation [42]. It
seems strange that cPA has an antagonistic property to-
wards LPA regardless of binding to the same LPA recep-
tor; one explanation is the difference in receptor affinity:
LPA has a high affinity for LPA1–3, while cPA has a high
affinity for LPA3–5 [17]. These findings suggested that
2ccPA exerted antifibrotic effect via LPA4/AC/cAMP
signaling, although we did not check the affinity of
2ccPA for LPA4 and that should be investigated for fur-
ther research. Another possibility for the regulation of
intracellular cAMP levels by 2ccPA is its action as a
PDE3 inhibitor [33]. 2ccPA has been suggested to be an
inhibitor of cPA-dependent decreased PDE3B expression
in the HT-29 colon cell line [33]. The novel action of
cPA as a PDE inhibitor should be elucidated in further
investigations.
We also showed that 2ccPA promoted HGF and PGE2

production from SSc skin fibroblasts, which may be an-
other antifibrotic mechanism of 2ccPA. HGF is known
to be an epithelial repair molecule [30–32, 43]. HGF fa-
cilitates apoptosis of αSMA-positive myofibroblasts and
enhances the expression of matrix metalloproteinases
[43]. Overexpression of the HGF receptor c-met in SSc
skin fibroblasts and high serum concentrations of HGF
in SSc patients have been reported, suggesting a negative
feedback response in the pathogenesis of SSc [44].



Fig. 6 2ccPA suppressed the development of bleomycin-induced skin fibrosis in mice. a Representative histological sections in skin biopsies of
mice treated with PBS, bleomycin (Bleo), Bleo+2ccPA 1mg/kg, or Bleo+2ccPA 10mg/kg. Scale bar = 100 μm. b Skin thickness, collagen content,
and αSMA-positive cells of each group. Each group consisted of eight mice. Bars represent the mean ± SD. *p < 0.05
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Altered PGE2 production and signaling have been noted
in fibrotic fibroblasts. PGE2 has several inhibitory ac-
tions on fibroblast function, including chemotaxis,
growth factor receptor expression, collagen synthesis,
and myofibroblast differentiation [45]. PGE2 levels have
been reported in bronchoalveolar lavage fluid in patients
with idiopathic pulmonary fibrosis (IPF) [45]. In
addition, fibroblasts derived from IPF patients have been
shown to be decreased in EP2 (a PGE2 receptor) and
protein kinase A (PKA) expression [46]. Thus, 2ccPA
may regulate the physiological status of tissue fibrosis by
decreasing ECM production and increasing antifibrotic
molecules.
Elevated intracellular cAMP activates PKA, an ex-

change protein directly activated by cAMP (Epac) and
the nucleotide-gated channel [35]. PKA is a
cAMP-dependent protein kinase that phosphorylates
serine/threonine residues of its target proteins. Once
PKA is activated, the monomer catalytic subunit translo-
cates to the nucleus and phosphorylates cAMP response
element binding protein (CREB). CREB phosphorylation
is also induced by mitogen-activated protein kinases
(MAPKs) and Ca2+/ calmodulin-dependent protein ki-
nases (CaMKs) [47]. Phosphorylated CREB binds to the
coactivator CBP/P300 and promotes cAMP-response
element (CRE)-dependent gene expression. In mamma-
lian cells, CRE mediates various gene expression profiles
related to cell survival, proliferation, and differentiation.
The contribution of the cAMP/PKA pathway to the
antifibrotic effect has been reported to be TGF-β/Smad--
dependent [35]. CREB seems to inhibit interactions be-
tween Smad3 and CREB-binding protein (CBP) and
p300, but not the nuclear translocation and DNA bind-
ing of the Smad3/4 complex [48]. Similarly, a
cAMP-elevating agent did not abolish TGF-β1-driven
Smad3 phosphorylation (data not shown). The other ac-
tivated protein, Epac, has also been shown to play a role
in the antifibrotic mechanisms of cAMP-elevating agents
[49]. Epac is a PKA-independent guanine nucleotide ex-
change factor (GEF) that regulates the activities of
G-proteins, such as Rap-1, by binding to GTP. The anti-
fibrotic effect of Epac has been intensively investigated
in the heart. Expression of Epac is regulated by profibro-
genic stimuli (e.g., TGF-β and angiotensin II), and overex-
pression of Epac1 leads to decreased ECM production in
cardiac fibroblasts [50]. Thus, it has been demonstrated
that both PKA and Epac exert antifibrotic effects in a dif-
ferent manner. Due to the limitations of the currently
available assays, it remains unclear which physiological
factor determines the affinity of cAMP to PKA or Epac.
There are several limitations to our study. First, SSc is

a heterogeneous disease, and a small number of skin fi-
broblasts do not represent all of the pathogenesis of the
disease. Second, we did not perform loss and gain of
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function experiments. Therefore, we did not fully eluci-
date the relationship between LPA receptors and 2ccPA.
Furthermore, we did not fully investigate how 22cPA in-
creases the intracellular cAMP levels.
In summary, we demonstrate a novel property of

2ccPA in preventing the progression of fibrosis using
SSc skin fibroblasts and bleomycin-induced skin fibrosis.
2ccPA abrogates ECM production and promotes antifi-
brotic molecules from SSc skin fibroblasts. 2ccPA also at-
tenuates the progression of fibrosis in bleomycin-induced
skin fibrosis. These findings suggest that 2ccPA may be a
promising antifibrotic agent for the treatment of SSc.

Conclusions
Antifibrotic treatment of SSc is still under development.
Currently, severe skin fibrosis in SSc can be treated by
immunosuppressive drugs. However, no clinical trial has
proved that immunosuppressants are effective in treating
SSc. 2ccPA, a stable derivative of cPA, is expected to be
used in various clinical settings owing to its pleiotropic
property. The ECM production of SSc skin fibroblasts
was significantly reduced by 2ccPA in part via intracellu-
lar cAMP synthesis. Moreover, the antifibrotic effect was
demonstrated using bleomycin-induced SSc model mice.
It was suggested that 2ccPA could be a novel strategy
for the treatment of SSc.
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