188 research outputs found

    Formative assessment and feedback to learners

    Get PDF

    Creating Joint Representations of Collaborative Problem Solving with Multi-touch Technology

    Get PDF
    Multi-touch surfaces have the potential to change the nature of computer-supported collaborative learning, allowing more equitable access to shared digital content. In this paper, we explore how large multi-touch tables can be used by groups of students as an external representation of their group interaction processes. Video data from 24 groups of students working on a logic reasoning problem was examined to identify their levels of reasoning about the task, and how they used the table to support their reasoning. Results indicate that of the 13 groups who solved or nearly solved the problem, 12 used the table to represent their reasoning process, while only four groups who used the table to support their reasoning process did not solve the problem. Examples from three groups are used to explore the different ways the table was used as an external representation of the groups' processes. The findings indicate that the group problem-solving process can be enhanced with the use of multi-touch tables, although students may need support in using the technology effectively to support their collaborative reasoning

    Advances in single crystal growth and annealing treatment of electron-doped HTSC

    Full text link
    High quality electron-doped HTSC single crystals of Pr2xCexCuO4+δ\rm Pr_{2-x}Ce_{x}CuO_{4+\delta} and Nd2xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} have been successfully grown by the container-free traveling solvent floating zone technique. The optimally doped Pr2xCexCuO4+δ\rm Pr_{2-x}Ce_{x}CuO_{4+\delta} and Nd2xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} crystals have transition temperatures TcT_{\rm c} of 2525\,K and 23.523.5\,K, respectively, with a transition width of less than 11\,K. We found a strong dependence of the optimal growth parameters on the Ce content xx. We discuss the optimization of the post-growth annealing treatment of the samples, the doping extension of the superconducting dome for both compounds as well as the role of excess oxygen. The absolute oxygen content of the as-grown crystals is determined from thermogravimetric experiments and is found to be 4.0\ge 4.0. This oxygen surplus is nearly completely removed by a post-growth annealing treatment. The reduction process is reversible as demonstrated by magnetization measurements. In as-grown samples the excess oxygen resides on the apical site O(3). This apical oxygen has nearly no doping effect, but rather influences the evolution of superconductivity by inducing additional disorder in the CuO2_{2} layers. The very high crystal quality of Nd2xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} is particularly manifest in magnetic quantum oscillations observed on several samples at different doping levels. They provide a unique opportunity of studying the Fermi surface and its dependence on the carrier concentration in the bulk of the crystals.Comment: 19 pages, 7 figures, submitted to Eur. Phys. J.

    Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps

    Full text link
    We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied {\it perpendicular} to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IVIV curve with voltage noise, Lyapunov exponents and Poincar\'e sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model.Comment: 12 pages, 11 figure

    Velocity-force characteristics of an interface driven through a periodic potential

    Full text link
    We study the creep dynamics of a two-dimensional interface driven through a periodic potential using dynamical renormalization group methods. We find that the nature of weak-drive transport depends qualitatively on whether the temperature TT is above or below the equilibrium roughening transition temperature TcT_c. Above TcT_c, the velocity-force characteristics is Ohmic, with linear mobility exhibiting a jump discontinuity across the transition. For TTcT \le T_c, the transport is highly nonlinear, exhibiting an interesting crossover in temperature and weak external force FF. For intermediate drive, F>FF>F_*, we find near TcT_c^{-} a power-law velocity-force characteristics v(F)Fσv(F)\sim F^\sigma, with σ1t~\sigma-1\propto \tilde{t}, and well-below TcT_c, v(F)e(F/F)2t~v(F)\sim e^{-(F_*/F)^{2\tilde{t}}}, with t~=(1T/Tc)\tilde{t}=(1-T/T_c). In the limit of vanishing drive (FFF\ll F_*) the velocity-force characteristics crosses over to v(F)e(F0/F)v(F)\sim e^{-(F_0/F)}, and is controlled by soliton nucleation.Comment: 18 pages, submitted to Phys. Rev.

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.Peer reviewe
    corecore