2,424 research outputs found
Isoëtes hieronymi U. Weber
Sierra Achala, en la laguna de la cumbre del Cerro de los PotrerillospublishedVersio
Larval dispersal in a changing ocean with an emphasis on upwelling regions
Dispersal of benthic species in the sea is mediated primarily through small, vulnerable larvae that must survive minutes to months as members of the plankton community while being transported by strong, dynamic currents. As climate change alters ocean conditions, the dispersal of these larvae will be affected, with pervasive ecological and evolutionary consequences. We review the impacts of oceanic changes on larval transport, physiology, and behavior. We then discuss the implications for population connectivity and recruitment and evaluate life history strategies that will affect susceptibility to the effects of climate change on their dispersal patterns, with implications for understanding selective regimes in a future ocean. We find that physical oceanographic changes will impact dispersal by transporting larvae in different directions or inhibiting their movements while changing environmental factors, such as temperature, pH, salinity, oxygen, ultraviolet radiation, and turbidity, will affect the survival of larvae and alter their behavior. Reduced dispersal distance may make local adaptation more likely in well-connected populations with high genetic variation while reduced dispersal success will lower recruitment with implications for fishery stocks. Increased dispersal may spur adaptation by increasing genetic diversity among previously disconnected populations as well as increasing the likelihood of range expansions. We hypothesize that species with planktotrophic (feeding), calcifying, or weakly swimming larvae with specialized adult habitats will be most affected by climate change. We also propose that the adaptive value of retentive larval behaviors may decrease where transport trajectories follow changing climate envelopes and increase where transport trajectories drive larvae toward increasingly unsuitable conditions. Our holistic framework, combined with knowledge of regional ocean conditions and larval traits, can be used to produce powerful predictions of expected impacts on larval dispersal as well as the consequences for connectivity, range expansion, or recruitment. Based on our findings, we recommend that future studies take a holistic view of dispersal incorporating biological and oceanographic impacts of climate change rather than solely focusing on oceanography or physiology. Genetic and paleontological techniques can be used to examine evolutionary impacts of altered dispersal in a future ocean, while museum collections and expedition records can inform modern-day range shifts
Urban stream microbial communities show resistance to pharmaceutical exposure
Residues of pharmaceuticals are increasingly detected in surface waters throughout the world. In four streams in Baltimore, Maryland, USA, we detected analgesics, stimulants, antihistamines, and antibiotics using passive organic samplers. We exposed biofilm communities in these streams to the common drugs caffeine, cimetidine, ciprofloxacin, and diphenhydramine. Respiration rates in the least urban stream were suppressed when exposed to these drugs, but biofilm functioning in the most urban stream was resistant to drug exposure. Exposure to the antibiotic ciprofloxacin altered bacterial community composition at all sites, with the greatest change occurring in the most urban stream. These results indicated that continuous exposure to drugs in urban streams may select for sub-populations of highly resistant bacteria that maintain community function in response to urban contaminants
Stream Microbial Communities Show Resistance to Pharmaceutical Exposure
Residues of pharmaceuticals are increasingly detected in surface waters throughout the world. In four streams in Baltimore, Maryland, USA, we detected analgesics, stimulants, antihistamines, and antibiotics using passive organic samplers. We exposed biofilm communities in these streams to the common drugs caffeine, cimetidine, ciprofloxacin, and diphenhydramine. Respiration rates in the least urban stream were suppressed when exposed to these drugs, but biofilm functioning in the most urban stream was resistant to drug exposure. Exposure to the antibiotic ciprofloxacin altered bacterial community composition at all sites, with the greatest change occurring in the most urban stream. These results indicated that continuous exposure to drugs in urban streams may select for sub‐populations of highly resistant bacteria that maintain community function in response to urban contaminants
The significance of motivation in student-centred learning : a reflective case study
The theoretical underpinnings of student-centred learning suggest motivation to be an integral component. However, lack of clarification of what is involved in motivation in education often results in unchallenged assumptions that fail to recognise that what motivates some students may alienate others. This case study, using socio-cognitive motivational theory to analyse previously collected data, derives three fuzzy propositions which, collectively, suggest that motivation interacts with the whole cycle of episodes in the teachinglearning process. It argues that the development of the higherlevel cognitive competencies that are implied by the term, student-centred learning, must integrate motivational constructs such as goal orientation, volition, interest and attributions into pedagogical practices
A Unifying Model of Genome Evolution Under Parsimony
We present a data structure called a history graph that offers a practical
basis for the analysis of genome evolution. It conceptually simplifies the
study of parsimonious evolutionary histories by representing both substitutions
and double cut and join (DCJ) rearrangements in the presence of duplications.
The problem of constructing parsimonious history graphs thus subsumes related
maximum parsimony problems in the fields of phylogenetic reconstruction and
genome rearrangement. We show that tractable functions can be used to define
upper and lower bounds on the minimum number of substitutions and DCJ
rearrangements needed to explain any history graph. These bounds become tight
for a special type of unambiguous history graph called an ancestral variation
graph (AVG), which constrains in its combinatorial structure the number of
operations required. We finally demonstrate that for a given history graph ,
a finite set of AVGs describe all parsimonious interpretations of , and this
set can be explored with a few sampling moves.Comment: 52 pages, 24 figure
Living with the consequences of policy decisions: reactions to student lifestyles in the neighbourhood
A national (UK) policy to expand higher education has changed the demographic composition of communities in many university towns and cities and the social forces operating thereon. As the economy and services adapt, those already resident in such areas may be quite comfortable accommodating the changes. Those who are not may leave (exit/flight) or stay and either ‘hunker down’ (loyalty) or act to protect what it was they had come to value about the area (voice). The case examined here is that of a part of Leeds where the consequent ‘studentification’ prompted the exit of many residents, thereby making way for further students. Some residents, with strong roots in the area, remained loyal and it is their views, along with those of business people, councillors and others, that are examined in this paper. This study of reactions to student lifestyles was initially prompted by Cohen’s notion of ‘moral panic’ that gradually revealed a contestation over the right to determine the character, the soul, of the area. In so doing it considers how, as soft or symbolic power ebbed, attempts were made by local residents to shape a policy response. However, in that arena too, the locus of control is shown to be elusive
- …