43 research outputs found

    Response of Wheat Fungal Diseases to Elevated Atmospheric CO2 Level

    Get PDF
    Infection with fungal pathogens on wheat varieties with different levels of resistance was tested at ambient (NC, 390 ppm) and elevated (EC, 750 ppm) atmospheric CO2 levels in the phytotron. EC was found to affect many aspects of the plant-pathogen interaction. Infection with most fungal diseases was usually found to be promoted by elevated CO2 level in susceptible varieties. Powdery mildew, leaf rust and stem rust produced more severe symptoms on plants of susceptible varieties, while resistant varieties were not infected even at EC. The penetration of Fusarium head blight (FHB) into the spike was delayed by EC in Mv Mambo, while it was unaffected in Mv Regiment and stimulated in Mv Emma. EC increased the propagation of FHB in Mv Mambo and Mv Emma. Enhanced resistance to the spread of Fusarium within the plant was only found in Mv Regiment, which has good resistance to penetration but poor resistance to the spread of FHB at NC. FHB infection was more severe at EC in two varieties, while the plants of Mv Regiment, which has the best field resistance at NC, did not exhibit a higher infection level at EC. The above results suggest that breeding for new resistant varieties will remain a useful means of preventing more severe infection in a future with higher atmospheric CO2 levels

    Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism

    Get PDF
    CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis

    No full text
    10.1038/srep42225Scientific Reports74222

    Gene and genome duplications and the origin fo C4 photosysnthesis: Birth of a trait in the Cleomaceae

    Get PDF
    C4 photosynthesis is a trait that has evolved in 66 independent plant lineages and increases the efficiency of carbon fixation. The shift from C3 to C4 photosynthesis requires substantial changes to genes and gene functions effecting phenotypic, physiological and enzymatic changes. We investigate the role of ancient whole genome duplications (WGD) as a source of new genes in the development of this trait and compare expression between paralog copies. We compare Gynandropsis gynandra, the closest relative of Arabidopsis that uses C4 photosynthesis, with its C3 relative Tarenaya hassleriana that underwent a WGD named Th-a. We establish through comparison of paralog synonymous substitution rate that both species share this paleohexaploidy. Homologous clusters of photosynthetic gene families show that gene copy numbers are similar to what would be expected given their duplication history and that no significant difference between the C3 and C4 species exists in terms of gene copy number. This is further confirmed by syntenic analysis of T. hassleriana, Arabidopsis thaliana and Aethionema arabicum, where syntenic region copy number ratios lie close to what could be theoretically expected. Expression levels of C4 photosynthesis orthologs show that regulation of transcript abundance in T. hassleriana is much less strictly controlled than in G. gynandra, where orthologs have extremely similar expression patterns in different organs, seedlings and seeds. We conclude that the Th-a and older paleopolyploidy events have had a significant influence on the specific genetic makeup of Cleomaceae versus Brassicaceae. Because the copy number of various essential genes involved in C4 photosynthesis is not significantly influenced by polyploidy combined with the fact that transcript abundance in G. gynandra is more strictly controlled, we also conclude that recruitment of existing genes through regulatory changes is more likely to have played a role in the shift to C4 than the neofunctionalization of duplicated genes
    corecore