306 research outputs found
Phase II Trial of IL-12 Plasmid Transfection and PD-1 Blockade in Immunologically Quiescent Melanoma.
PurposeTumors with low frequencies of checkpoint positive tumor-infiltrating lymphocytes (cpTIL) have a low likelihood of response to PD-1 blockade. We conducted a prospective multicenter phase II trial of intratumoral plasmid IL-12 (tavokinogene telseplasmid; "tavo") electroporation combined with pembrolizumab in patients with advanced melanoma with low frequencies of checkpoint positive cytotoxic lymphocytes (cpCTL).Patients and methodsTavo was administered intratumorally days 1, 5, and 8 every 6 weeks while pembrolizumab (200 mg, i.v.) was administered every 3 weeks. The primary endpoint was objective response rate (ORR) by RECIST, secondary endpoints included duration of response, overall survival and progression-free survival. Toxicity was evaluated by the CTCAE v4. Extensive correlative analysis was done.ResultsThe combination of tavo and pembrolizumab was well tolerated with adverse events similar to those previously reported with pembrolizumab alone. Patients had a 41% ORR (n = 22, RECIST 1.1) with 36% complete responses. Correlative analysis showed that the combination enhanced immune infiltration and sustained the IL-12/IFNγ feed-forward cycle, driving intratumoral cross-presenting dendritic cell subsets with increased TILs, emerging T cell receptor clones and, ultimately, systemic cellular immune responses.ConclusionsThe combination of tavo and pembrolizumab was associated with a higher than expected response rate in this poorly immunogenic population. No new or unexpected toxicities were observed. Correlative analysis showed T cell infiltration with enhanced immunity paralleling the clinical activity in low cpCTL tumors
Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit
<p>Abstract</p> <p>Background</p> <p><it>Phaleria macrocarpa </it>(Scheff.) Boerl (Thymelaceae) originates from Papua Island, Indonesia and grows in tropical areas. The different parts of the fruit of <it>P. macrocarpa </it>were evaluated for antioxidant, anti-inflammatory, and cytotoxic activities.</p> <p>Methods</p> <p><it>Phaleria macrocarpa </it>fruit were divided into pericarp, mesocarp and seed. All parts of the fruit were reflux extracted with methanol. The antioxidant activity of the extracts were characterized in various <it>in vitro </it>model systems such as FTC, TBA, DPPH radical, reducing power and NO radical. Anti-inflammatory assays were done by using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-γ and cytotoxic activities were determined by using several cancer cell lines and one normal cell line</p> <p>Results</p> <p>The results showed that different parts (pericarp, mesocarp, and seed) of <it>Phaleria macrocarpa </it>fruit contain various amount of total phenolic (59.2 ± 0.04, 60.5 ± 0.17, 47.7 ± 1.04 mg gallic acid equivalent/g DW) and flavonoid compounds (161.3 ± 1.58, 131.7 ± 1.66, 35.9 ± 2.47 mg rutin equivalent/g DW). Pericarp and mesocarp showed high antioxidant activities by using DPPH (71.97%, 62.41%), ferric reducing antioxidant power (92.35%, 78.78%) and NO scavenging activity (65.68%, 53.45%). Ferric thiocyanate and thiobarbituric acid tests showed appreciable antioxidant activity in the percentage hydroperoxides inhibitory activity from pericarp and mesocarp in the last day of the assay. Similarly, the pericarp and mesocarp inhibited inducible nitric oxide synthesis with values of 63.4 ± 1.4% and 69.5 ± 1.4% in macrophage RAW 264.7 cell lines induced by LPS/IFN-γ indicating their notable anti-inflammatory potential. Cytotoxic activities against HT-29, MCF-7, HeLa and Chang cell lines were observed in all parts.</p> <p>Conclusions</p> <p>These results indicated the possible application of <it>P. macrocarpa </it>fruit as a source of bioactive compounds, potent as an antioxidant, anti inflammatory and cytotoxic agents.</p
Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells
Ferroptosis, a form of iron-dependent cell death driven by cellular metabolism and iron-dependent lipid peroxidation, has been implicated as a tumor-suppressor function for cancer therapy. Recent advance revealed that the sensitivity to ferroptosis is tightly linked to numerous biological processes, including metabolism of amino acid and the biosynthesis of glutathione. Here, by using a high-throughput CRISPR/Cas9-based genetic screen in HepG2 hepatocellular carcinoma cells to search for metabolic proteins inhibiting ferroptosis, we identified a branched-chain amino acid aminotransferase 2 (BCAT2) as a novel suppressor of ferroptosis. Mechanistically, ferroptosis inducers (erastin, sorafenib, and sulfasalazine) activated AMPK/SREBP1 signaling pathway through iron-dependent ferritinophagy, which in turn inhibited BCAT2 transcription. We further confirmed that BCAT2 as the key enzyme mediating the metabolism of sulfur amino acid, regulated intracellular glutamate level, whose activation by ectopic expression specifically antagonize system Xc(-) inhibition and protected liver and pancreatic cancer cells from ferroptosis in vitro and in vivo. On the contrary, direct inhibition of BCAT2 by RNA interference, or indirect inhibition by blocking system Xc(-) activity, triggers ferroptosis. Finally, our results demonstrate the synergistic effect of sorafenib and sulfasalazine in downregulating BCAT2 expression and dictating ferroptotic death, where BCAT2 can also be used to predict the responsiveness of cancer cells to ferroptosis-inducing therapies. Collectively, these findings identify a novel role of BCAT2 in ferroptosis, suggesting a potential therapeutic strategy for overcoming sorafenib resistance
Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution
Low-cost, layered transition-metal dichalcogenides (MX_2) based on molybdenum and tungsten have attracted substantial interest as alternative catalysts for the hydrogen evolution reaction (HER). These materials have high intrinsic per-site HER activity; however, a significant challenge is the limited density of active sites, which are concentrated at the layer edges. Here we unravel electronic factors underlying catalytic activity on MX_2 surfaces, and leverage the understanding to report group-5 MX_2 (H-TaS_2 and H-NbS_2) electrocatalysts whose performance instead mainly derives from highly active basal-plane sites, as suggested by our first-principles calculations and performance comparisons with edge-active counterparts. Beyond high catalytic activity, they are found to exhibit an unusual ability to optimize their morphology for enhanced charge transfer and accessibility of active sites as the HER proceeds, offering a practical advantage for scalable processing. The catalysts reach 10 mA cm^(−2) current density at an overpotential of ∼50–60 mV with a loading of 10–55 μg cm^(−2), surpassing other reported MX2 candidates without any performance-enhancing additives
Cell Lineage and Regional Identity of Cultured Spinal Cord Neural Stem Cells and Comparison to Brain-Derived Neural Stem Cells
Neural stem cells (NSCs) can be isolated from different regions of the central nervous system. There has been controversy whether regional differences amongst stem and progenitor cells are cell intrinsic and whether these differences are maintained during expansion in culture. The identification of inherent regional differences has important implications for the use of these cells in neural repair. Here, we compared NSCs derived from the spinal cord and embryonic cortex. We found that while cultured cortical and spinal cord derived NSCs respond similarly to mitogens and are equally neuronogenic, they retain and maintain through multiple passages gene expression patterns indicative of the region from which they were isolated (e.g Emx2 and HoxD10). Further microarray analysis identified 229 genes that were differentially expressed between cortical and spinal cord derived neurospheres, including many Hox genes, Nuclear receptors, Irx3, Pace4, Lhx2, Emx2 and Ntrk2. NSCs in the cortex express LeX. However, in the embryonic spinal cord there are two lineally related populations of NSCs: one that expresses LeX and one that does not. The LeX negative population contains few markers of regional identity but is able to generate LeX expressing NSCs that express markers of regional identity. LeX positive cells do not give rise to LeX-negative NSCs. These results demonstrate that while both embryonic cortical and spinal cord NSCs have similar self-renewal properties and multipotency, they retain aspects of regional identity, even when passaged long-term in vitro. Furthermore, there is a population of a LeX negative NSC that is present in neurospheres derived from the embryonic spinal cord but not the cortex
Circulating tumor cells criteria (CyCAR) versus standard RECIST criteria for treatment response assessment in metastatic colorectal cancer patients
The use of circulating tumor cells (CTCs) as indicators of treatment response in metastatic colorectal
cancer (mCRC) needs to be clarified. The objective of this study is to compare the Response Evaluation Criteria in Solid
Tumors (RECIST) with the Cytologic Criteria Assessing Response (CyCAR), based on the presence and phenotypic
characterization of CTCs, as indicators of FOLFOX–bevacizumab treatment response. We observed a decrease of CTCs (42.8 vs. 18.2%) and VEGFR positivity (69.7% vs. 41.7%) after treatment.
According to RECIST, 6.45% of the patients did not show any clinical benefit, whereas 93.55% patients showed a
favorable response at 12 weeks. According to CyCAR, 29% had a non-favorable response and 71% patients did not. No
significant differences were found between the response assessment by RECIST and CyCAR at 12 or 24 weeks. However,
in the multivariate analysis, RECIST at 12 weeks and CyCAR at 24 weeks were independent prognostic factors for
OS (HR: 0.1, 95% CI 0.02–0.58 and HR: 0.35, 95% CI 0.12–0.99 respectively). CyCAR results were comparable to RECIST in evaluating the response in mCRC and can be used as an
alternative when the limitation of RECIST requires additional response analysis techniques.This work was supported by Roche Spain and a Ph.D. grant from the University
of Granada
Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction
Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts
Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling
BACKGROUND: Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. CONCLUSIONS/SIGNIFICANCE: These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways
α-Tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells
Malignant mesothelioma (MM) is a fatal type of neoplasia with poor therapeutic prognosis, largely due to resistance to apoptosis. We investigated the apoptotic effect of alpha-tocopheryl succinate (alpha-TOS), a strong proapoptotic agent, in combination with the immunological apoptogen TNF-related apoptosis-inducing ligand (TRAIL) on both MM and nonmalignant mesothelial cells, since MM cells show low susceptibility to the clinically intriguing TRAIL. All MM cell lines tested were sensitive to alpha-TOS-induced apoptosis, and exerted high sensitivity to TRAIL in the presence of subapoptotic doses of the vitamin E analogue. Neither TRAIL or alpha-TOS alone or in combination caused apoptosis in nonmalignant mesothelial cells. Isobologram analysis of the cytotoxicity assays revealed a synergistic interaction between the two agents in MM cells and their antagonistic effect in nonmalignant mesothelial cells. TRAIL-induced apoptosis and its augmentation by alpha-TOS were inhibited by the caspase-8 inhibitor Z-IETD-FMK and the pan-caspase inhibitor Z-VAD-FMK. Activation of caspase-8 was required to induce apoptosis, which was amplified by alpha-TOS via cytochrome c release following Bid cleavage, with ensuing activation of caspase-9. Enhancement of TRAIL-induced apoptosis in MM cells by alpha-TOS was also associated with upregulation of the TRAIL cognate death receptors DR4 and DR5. Our results show that alpha-TOS and TRAIL act in synergism to kill MM cells via mitochondrial pathway, and are nontoxic to nonmalignant mesothelial cells. These findings are indicative of a novel strategy for treatment of thus far fatal MM
- …