106 research outputs found

    Dioxin Toxicity In Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl Hydrocarbon Receptor

    Get PDF
    The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single function

    Regulation of a rat VL30 element in human breast cancer cells in hypoxia and anoxia: role of HIF-1

    Get PDF
    Novel approaches to cancer gene therapy currently exploit tumour hypoxia to achieve transcriptional targeting using oxygen-regulated enhancer elements called hypoxia response elements. The activity of such elements in hypoxic cells is directly dependent on upregulation of the hypoxia-inducible transcription factor-1 However tumours also contain areas of anoxia, which may be considered a more tumour-selective transcriptional stimulus than hypoxia for targeting gene therapy to tumours. Another element, from the rat virus-like retrotransposon, VL30 (termed the ‘secondary anoxia response element’) has been reported to be more highly inducible in rat fibroblasts under anoxia than hypoxia. To investigate anoxia as a potential transcriptional target in human tumours, we have examined secondary anoxia response element inducibility in two human breast cancer cell lines, MCF-7 and T47D, under anoxia, hypoxia and normoxia. In both cell types, the trimerised secondary anoxia response element showed greater inducibility in anoxia than hypoxia (1% and 0.5% O2). The anoxic response of the secondary anoxia response element was shown to be dependent on hypoxia-inducible transcription factor-1 and the presence of a hypoxia-inducible transcription binding site consensus (5′-ACGTG-3′). Mutational analysis demonstrated that the base immediately 5′ to this modulates the anoxic/hypoxic induction of the secondary anoxia response element, such that TACGTG>GACGTG>>CACGTG. A similar correlation was found for erythropoietin, phosphoglycerate kinase 1, and aldolase hypoxia response elements, which contain these respective 5′ flanking bases

    Hybrids of the bHLH and bZIP Protein Motifs Display Different DNA-Binding Activities In Vivo vs. In Vitro

    Get PDF
    Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim) protein Arnt fused to the leucine zipper (LZ) dimerization domain from bZIP (basic region-leucine zipper) protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper) proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H), transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed), as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (Kd 148.9 nM and 40.2 nM, respectively), but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly α-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60–70 aa). Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions

    Patient Discomfort Associated with the Use of Intra-arterial Iodinated Contrast Media: A Meta-Analysis of Comparative Randomized Controlled Trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discomfort characterized by pain and warmth are common adverse effects associated with the use of intra-arterial iodinated contrast media (CM). The objective of this review was to pool patient-reported outcomes available from head-to-head randomized controlled trials (RCTs) and to compare the discomfort rates associated with iso-osmolar contrast media (IOCM; i.e., iodixanol) to those reported with various low-osmolar contrast media (LOCM).</p> <p>Methods</p> <p>A review of the literature published between 1990 and 2009 available through Medline, Medline Preprints, Embase, Biological Abstracts, BioBase, Cab Abstracts, International Pharmaceutical Abstracts, Life Sciences Collection, Inside Conferences, Energy Database, Engineering Index and Technology Collection was performed to compare rates of discomfort associated with the use of the IOCM (iodixanol) vs. various LOCM agents in head-to-head RCTs. All trials with a Jadad score ≥2 that reported patient discomfort data following intra-arterial administration of CM were reviewed, coded, and extracted.</p> <p>Results</p> <p>A total of 22 RCTs (n = 8087) were included. Overall discomfort (regardless of severity) was significantly different between patients receiving IOCM and various LOCMs (risk difference [RD] -0.049; 95% confidence interval [CI]: -0.076, -0.021; p = 0.001). IOCM was favored over all LOCMs combined with a summary RD value of -0.188 (95% CI: -0.265, -0.112; p < 0.001) for incidence of pain, regardless of severity. A greater reduction in the magnitude of pain was observed with IOCM (iodixanol), particularly with selective limb and carotid/intracerebral procedures. Similarly, the meta-analysis of warmth sensation, regardless of severity, favored IOCM over LOCMs with an RD of -0.043 (95% CI: -0.074, -0.011; p = 0.008). A positive linear relationship was observed between the discomfort effect size and age and a negative relationship with increasing proportion of women. The opposite trends were observed with warmth sensation.</p> <p>Conclusions</p> <p>IOCM was associated with less frequent and severe patient discomfort during intra-arterial administration. These data support differences in osmolality as a possible determinant of CM discomfort.</p

    Interaction of the Deubiquitinating Enzyme Ubp2 and the E3 Ligase Rsp5 Is Required for Transporter/Receptor Sorting in the Multivesicular Body Pathway

    Get PDF
    Protein ubiquitination is essential for many events linked to intracellular protein trafficking. We sought to elucidate the possible involvement of the S. cerevisiae deubiquitinating enzyme Ubp2 in transporter and receptor trafficking after we (this study) and others established that affinity purified Ubp2 interacts stably with the E3 ubiquitin ligase Rsp5 and the (ubiquitin associated) UBA domain containing protein Rup1. UBP2 interacts genetically with RSP5, while Rup1 facilitates the tethering of Ubp2 to Rsp5 via a PPPSY motif. Using the uracil permease Fur4 as a model reporter system, we establish a role for Ubp2 in membrane protein turnover. Similar to hypomorphic rsp5 alleles, cells deleted for UBP2 exhibited a temporal stabilization of Fur4 at the plasma membrane, indicative of perturbed protein trafficking. This defect was ubiquitin dependent, as a Fur4 N-terminal ubiquitin fusion construct bypassed the block and restored sorting in the mutant. Moreover, the defect was absent in conditions where recycling was absent, implicating Ubp2 in sorting at the multivesicular body. Taken together, our data suggest a previously overlooked role for Ubp2 as a positive regulator of Rsp5-mediated membrane protein trafficking subsequent to endocytosis

    Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    Get PDF
    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed

    The ongoing pursuit of neuroprotective therapies in Parkinson disease

    Get PDF
    Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-β deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD

    Medical follow-up for workers exposed to bladder carcinogens: the French evidence-based and pragmatic statement

    Full text link

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF
    corecore