117 research outputs found

    A grammar-based distance metric enables fast and accurate clustering of large sets of 16S sequences

    Get PDF
    Background: We propose a sequence clustering algorithm and compare the partition quality and execution time of the proposed algorithm with those of a popular existing algorithm. The proposed clustering algorithm uses a grammar-based distance metric to determine partitioning for a set of biological sequences. The algorithm performs clustering in which new sequences are compared with cluster-representative sequences to determine membership. If comparison fails to identify a suitable cluster, a new cluster is created. Results: The performance of the proposed algorithm is validated via comparison to the popular DNA/RNA sequence clustering approach, CD-HIT-EST, and to the recently developed algorithm, UCLUST, using two different sets of 16S rDNA sequences from 2,255 genera. The proposed algorithm maintains a comparable CPU execution time with that of CD-HIT-EST which is much slower than UCLUST, and has successfully generated clusters with higher statistical accuracy than both CD-HIT-EST and UCLUST. The validation results are especially striking for large datasets. Conclusions: We introduce a fast and accurate clustering algorithm that relies on a grammar-based sequence distance. Its statistical clustering quality is validated by clustering large datasets containing 16S rDNA sequences

    Grammar-based distance in progressive multiple sequence alignment

    Get PDF
    Background: We propose a multiple sequence alignment (MSA) algorithm and compare the alignment-quality and execution-time of the proposed algorithm with that of existing algorithms. The proposed progressive alignment algorithm uses a grammar-based distance metric to determine the order in which biological sequences are to be pairwise aligned. The progressive alignment occurs via pairwise aligning new sequences with an ensemble of the sequences previously aligned. Results: The performance of the proposed algorithm is validated via comparison to popular progressive multiple alignment approaches, ClustalW and T-Coffee, and to the more recently developed algorithms MAFFT, MUSCLE, Kalign, and PSAlign using the BAliBASE 3.0 database of amino acid alignment files and a set of longer sequences generated by Rose software. The proposed algorithm has successfully built multiple alignments comparable to other programs with significant improvements in running time. The results are especially striking for large datasets. Conclusion: We introduce a computationally efficient progressive alignment algorithm using a grammar based sequence distance particularly useful in aligning large datasets

    p16INK4A Positively Regulates Cyclin D1 and E2F1 through Negative Control of AUF1

    Get PDF
    /pRB/E2F pathway, a key regulator of the critical G1 to S phase transition of the cell cycle, is universally disrupted in human cancer. However, the precise function of the different members of this pathway and their functional interplay are still not well defined. -dependent manner, and several of these genes are also members of the AUF1 and E2F1 regulons. We also present evidence that E2F1 mediates p16-dependent regulation of several pro- and anti-apoptotic proteins, and the consequent induction of spontaneous as well as doxorubicin-induced apoptosis. is also a modulator of transcription and apoptosis through controlling the expression of two major transcription regulators, AUF1 and E2F1

    Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC)

    Get PDF
    Background NSCLC exhibits considerable heterogeneity in its sensitivity to chemotherapy and similar heterogeneity is noted in vitro in a variety of model systems. This study has tested the hypothesis that the molecular basis of the observed in vitro chemosensitivity of NSCLC lies within the known resistance mechanisms inherent to these patients' tumors. Methods The chemosensitivity of a series of 49 NSCLC tumors was assessed using the ATP-based tumor chemosensitivity assay (ATP-TCA) and compared with quantitative expression of resistance genes measured by RT-PCR in a Taqman Array™ following extraction of RNA from formalin-fixed paraffin-embedded (FFPE) tissue. Results There was considerable heterogeneity between tumors within the ATP-TCA, and while this showed no direct correlation with individual gene expression, there was strong correlation of multi-gene signatures for many of the single agents and combinations tested. For instance, docetaxel activity showed some dependence on the expression of drug pumps, while cisplatin activity showed some dependence on DNA repair enzyme expression. Activity of both drugs was influenced more strongly still by the expression of anti- and pro-apoptotic genes by the tumor for both docetaxel and cisplatin. The doublet combinations of cisplatin with gemcitabine and cisplatin with docetaxel showed gene expression signatures incorporating resistance mechanisms for both agents. Conclusion Genes predicted to be involved in known mechanisms drug sensitivity and resistance correlate well with in vitro chemosensitivity and may allow the definition of predictive signatures to guide individualized chemotherapy in lung cancer

    Diabetes mellitus type 2 and other chronic non-communicable diseases in the central region, Saudi Arabia (riyadh cohort 2): a decade of an epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Follow-up epidemiologic studies are needed to assess trends and patterns of disease spread. No follow-up epidemiologic study has been done in the Kingdom of Saudi Arabia to assess the current prevalence of major chronic, noncommunicable diseases, specifically in the urban region, where modifiable risk factors remain rampant. This study aims to fill this gap.</p> <p>Methods</p> <p>A total of 9,149 adult Saudis ages seven to eighty years (5,357 males (58.6%) and 3,792 females (41.4%)) were randomly selected from the Riyadh Cohort Study for inclusion. Diagnosis of type 2 diabetes mellitus (DMT2) and obesity were based on the World Health Organization definitions. Diagnoses of hypertension and coronary artery disease (CAD) were based on the Seventh Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and American Heart Association criteria, respectively.</p> <p>Results</p> <p>The overall crude prevalence of DMT2 was 23.1% (95% confidence interval (95% CI) 20.47 to 22.15). The age-adjusted prevalence of DMT2 was 31.6%. DMT2 prevalence was significantly higher in males, with an overall age-adjusted prevalence of 34.7% (95% CI 32.6 to 35.4), than in females, who had an overall age-adjusted prevalence of 28.6% (95% CI 26.7 to 29.3) (<it>P </it>< 0.001). The overall crude prevalence of obesity was 31.1% (95% CI 30.1 to 32.0). The age-adjusted prevalence of obesity was 40.0%. The prevalence of obesity was higher in females, with an overall prevalence of 36.5% (95% CI 35.1 to 37.83), than in males (25.1% (95% CI 23.7 to 26.3)) (<it>P </it>< 0.001). The age-adjusted prevalence of hypertension and CAD were 32.6% (95% CI 31.7 to 33.6) and 6.9% (95% CI 6.4 to 7.4), respectively.</p> <p>Conclusion</p> <p>Comparisons of our findings with earlier data show that the prevalence of DMT2, hypertension and CAD in Riyadh, Saudi Arabia, has alarmingly worsened. Aggressive promotion of public awareness, continued screening and early intervention are pivotal to boosting a positive response.</p

    The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH

    Get PDF
    The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the “Warburg Effect”. However, cytoplasmic glucose utilization can also occur in cancer through the PPP. This pathway contributes to cancer cells by operating in many different ways: (i) as a defense mechanism via the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to prevent apoptosis, (ii) as a provision for the maintenance of energy by intermediate glycolysis, (iii) by increasing genomic material to the cellular pool of nucleic acid bases, (iv) by promoting survival through increasing glycolysis, and so increasing acid production, and (v) by inducing cellular proliferation by the synthesis of nucleic acid, fatty acid, and amino acid. Each step of the PPP can be upregulated in some types of cancer but not in others. An interesting aspect of this metabolic pathway is the shared regulation of the glycolytic and PPP pathways by intracellular pH (pHi). Indeed, as with glycolysis, the optimum activity of the enzymes driving the PPP occurs at an alkaline pHi, which is compatible with the cytoplasmic pH of cancer cells. Here, we outline each step of the PPP and discuss its possible correlation with cancer

    Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis

    Get PDF
    International audienceBACKGROUND: In mammals, a temporal disconnection between mRNA transcription and protein synthesis occurs during late steps of germ cell differentiation, in contrast to most somatic tissues where transcription and translation are closely linked. Indeed, during late stages of spermatogenesis, protein synthesis relies on the appropriate storage of translationally inactive mRNAs in transcriptionally silent spermatids. The factors and cellular compartments regulating mRNA storage and the timing of their translation are still poorly understood. The chromatoid body (CB), that shares components with the P. bodies found in somatic cells, has recently been proposed to be a site of mRNA processing. Here, we describe a new component of the CB, the RNA binding protein HuR, known in somatic cells to control the stability/translation of AU-rich containing mRNAs (ARE-mRNAs). METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of cell imagery and sucrose gradient fractionation, we show that HuR localization is highly dynamic during spermatid differentiation. First, in early round spermatids, HuR colocalizes with the Mouse Vasa Homolog, MVH, a marker of the CB. As spermatids differentiate, HuR exits the CB and concomitantly associates with polysomes. Using computational analyses, we identified two testis ARE-containing mRNAs, Brd2 and GCNF that are bound by HuR and MVH. We show that these target ARE-mRNAs follow HuR trafficking, accumulating successively in the CB, where they are translationally silent, and in polysomes during spermatid differentiation. CONCLUSIONS/SIGNIFICANCE: Our results reveal a temporal regulation of HuR trafficking together with its target mRNAs from the CB to polysomes as spermatids differentiate. They strongly suggest that through the transport of ARE-mRNAs from the CB to polysomes, HuR controls the appropriate timing of ARE-mRNA translation. HuR might represent a major post-transcriptional regulator, by promoting mRNA storage and then translation, during male germ cell differentiation
    corecore