590 research outputs found

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    liver-enriched gene 1a and 1b Encode Novel Secretory Proteins Essential for Normal Liver Development in Zebrafish

    Get PDF
    liver-enriched gene 1 (leg1) is a liver-enriched gene in zebrafish and encodes a novel protein. Our preliminary data suggested that Leg1 is probably involved in early liver development. However, no detailed characterization of Leg1 has been reported thus far. We undertook both bioinformatic and experimental approaches to study leg1 gene structure and its role in early liver development. We found that Leg1 identifies a new conserved protein superfamily featured by the presence of domain of unknown function 781 (DUF781). There are two copies of leg1 in zebrafish, namely leg1a and leg1b. Both leg1a and leg1b are expressed in the larvae and adult liver with leg1a being the predominant form. Knockdown of Leg1a or Leg1b by their respective morpholinos specifically targeting their 5′-UTR each resulted in a small liver phenotype, demonstrating that both Leg1a and Leg1b are important for early liver development. Meanwhile, we found that injection of leg1-ATGMO, a morpholino which can simultaneously block the translation of Leg1a and Leg1b, caused not only a small liver phenotype but hypoplastic exocrine pancreas and intestinal tube as well. Further examination of leg1-ATGMO morphants with early endoderm markers and early hepatic markers revealed that although depletion of total Leg1 does not alter the hepatic and pancreatic fate of the endoderm cells, it leads to cell cycle arrest that results in growth retardation of liver, exocrine pancreas and intestine. Finally, we proved that Leg1 is a secretory protein. This intrigued us to propose that Leg1 might act as a novel secreted regulator that is essential for liver and other digestive organ development in zebrafish

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Mitochondrial DNA Haplogroup Analysis Reveals no Association between the Common Genetic Lineages and Prostate Cancer in the Korean Population

    Get PDF
    Mitochondrial DNA (mtDNA) variation has recently been suggested to have an association with various cancers, including prostate cancer risk, in human populations. Since mtDNA is haploid and lacks recombination, specific mutations in the mtDNA genome associated with human diseases arise and remain in particular genetic backgrounds referred to as haplogroups. To assess the possible contribution of mtDNA haplogroup-specific mutations to the occurrence of prostate cancer, we have therefore performed a population-based study of a prostate cancer cases and corresponding controls from the Korean population. No statistically significant difference in the distribution of mtDNA haplogroup frequencies was observed between the case and control groups of Koreans. Thus, our data imply that specific mtDNA mutations/lineages did not appear to have a significant effect on a predisposition to prostate cancer in the Korean population, although larger sample sizes are necessary to validate our results

    Risk of malnutrition is associated with mental health symptoms in community living elderly men and women: The Tromsø Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little research has been done on the relationship between malnutrition and mental health in community living elderly individuals. In the present study, we aimed to assess the associations between mental health (particularly anxiety and depression) and both the risk of malnutrition and body mass index (BMI, kg/m<sup>2</sup>) in a large sample of elderly men and women from Tromsø, Norway.</p> <p>Methods</p> <p>In a cross-sectional survey, with 1558 men and 1553 women aged 65 to 87 years, the risk of malnutrition was assessed by the Malnutrition Universal Screening Tool ('MUST'), and mental health was measured by the Symptoms Check List 10 (SCL-10). BMI was categorised into six groups (< 20.0, 20.0-22.4, 22.5-24.9, 25.0-27.4, 27.5-29.9, ≥ 30.0 kg/m<sup>2</sup>).</p> <p>Results</p> <p>The risk of malnutrition (combining medium and high risk) was found in 5.6% of the men and 8.6% of the women. Significant mental health symptoms were reported by 3.9% of the men and 9.1% of the women. In a model adjusted for age, marital status, smoking and education, significant mental health symptoms (SCL-10 score ≥ 1.85) were positively associated with the risk of malnutrition (odds ratio 3.9 [95% CI 1.7-8.6] in men and 2.5 [95%CI 1.3-4.9] in women), the association was positive also for subthreshold mental health symptoms. For individuals with BMI < 20.0 the adjusted odds ratio for significant mental health symptoms was 2.0 [95% CI 1.0-4.0].</p> <p>Conclusions</p> <p>Impaired mental health was strongly associated with the risk of malnutrition in community living elderly men and women and this association was also significant for subthreshold mental health symptoms.</p

    Впровадження основних положень Болонського процесу в післядипломну освіту лікарів

    Get PDF
    Summary. This prospective analysis assessed the risk of mild mental retardation (MMR) associated with low birthweight (LBW) in the Child Health and Development Studies. Scores of 50–70 on the Raven Progressive Matrices, a relatively culture-free test of cognitive functioning, were used to categorise MMR. At the age of 5,13.8% of the 195 children with birthweights less than 2500 g (LBW) were MMR, whilst 4.2% of the 2293 children with normal birthweights (\u3e2955 grams) were MMR. After adjusting for confounders (maternal age, race, education, prenatal alcohol use, maternal conditions, and congenital anomalies), the relative risk of MMR for LBW was 3.4 (95% CI 1.2–5.4). For children aged 9–11, 7.7% of 194 LBW children were MMR, compared with 6.2% of the 2546 with normal birthweights; the adjusted relative risk for LBW was 1.2 (95% CI 0.7–2.0). Although a strong association between LBW and MMR was observed for both blacks and non-blacks at the age of 5, the association between birthweight and MMR was apparent only for blacks in the cohort of children aged 9–11. These findings suggest that race, a marker for environmental factors which were not measured in this study, may modify the LBW and MMR relationship
    corecore