38 research outputs found

    Traits and stress: keys to identify community effects of low levels of toxicants in test systems

    Get PDF
    Community effects of low toxicant concentrations are obscured by a multitude of confounding factors. To resolve this issue for community test systems, we propose a trait-based approach to detect toxic effects. An experiment with outdoor stream mesocosms was established 2-years before contamination to allow the development of biotic interactions within the community. Following pulse contamination with the insecticide thiacloprid, communities were monitored for additional 2 years to observe long-term effects. Applying a priori ecotoxicological knowledge species were aggregated into trait-based groups that reflected stressor-specific vulnerability of populations to toxicant exposure. This reduces inter-replicate variation that is not related to toxicant effects and enables to better link exposure and effect. Species with low intrinsic sensitivity showed only transient effects at the highest thiacloprid concentration of 100 μg/l. Sensitive multivoltine species showed transient effects at 3.3 μg/l. Sensitive univoltine species were affected at 0.1 μg/l and did not recover during the year after contamination. Based on these results the new indicator SPEARmesocosm was calculated as the relative abundance of sensitive univoltine taxa. Long-term community effects of thiacloprid were detected at concentrations 1,000 times below those detected by the PRC (Principal Response Curve) approach. We also found that those species, characterised by the most vulnerable trait combination, that were stressed were affected more strongly by thiacloprid than non-stressed species. We conclude that the grouping of species according to toxicant-related traits enables identification and prediction of community response to low levels of toxicants and that additionally the environmental context determines species sensitivity to toxicants

    Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors

    Get PDF
    The influence of eutrophication of fluvial ecosystems (caused by increased phosphorus concentrations) on periphyton Cu sensitivity is explored from a multi-scale perspective, going from the field to the laboratory. The study design included three tiers: a field study including the characterization of land use and the ecological state of the corresponding river sections in the Fluvià River watershed, an experimental investigation performed with natural periphyton from the previously studied stream sites in indoor channels, and finally a culture study in the laboratory. Results showed that differences in copper sensitivity of natural periphyton communities followed the gradient of nutrient concentration found in the field. Results from the culture experiments demonstrated that both, P-conditions during growth and P-content in the media are important factors modulating the toxicological response of algae to Cu. The observations from this study indicate that the ecological effects of metal pollution in rivers might be obscured by eutrophication

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Improving the Value of Standard Toxicity Test Data in REACH

    Get PDF
    Worldwide, environmental risk assessment strategies are based on the assumption that measuring direct effects of single substances, using a few single species tests, in combination with safety factors correcting for extrapolation inconsistencies, can be used to protect higher levels of biological organization, such as populations and even ecosystems. At the same time, we are currently facing a range of pollution problems (Millennium Ecosystem Assessment Series 2005), of which some could at least indirectly be linked to the fact that this assumption may not be fully valid. Consequently, there is an ongoing scientific debate on whether current chemical control protocols are sufficient for protection of ecosystems, and numerous suggestions for improvements have been presented by the scientific community, e.g. alternative tests and testing strategies. On the other hand, few of these suggestions actually reach the regulatory world (or become implemented), and risk assessment today basically follows the same paradigm as 30 years ago. While the new REACH regime is exceptionally ambitious, this chapter observes several problems and gaps in this regulatory framework. We suggest measures and approaches which imply increased ecological realism and understanding in future regulatory work

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF

    No evidence for a saccadic range effect for visually guided and memory-guided saccades in simple saccade-targeting tasks

    Get PDF
    International audienceSaccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task
    corecore