520 research outputs found

    An Evolutionary Approach to Active Robust Multiobjective Optimisation

    Get PDF
    An Active Robust Optimisation Problem (AROP) aims at finding robust adaptable solutions, i.e. solutions that actively gain robustness to environmental changes through adaptation. Existing AROP studies have considered only a single performance objective. This study extends the Active Robust Optimisation methodology to deal with problems with more than one objective. Once multiple objectives are considered, the optimal performance for every uncertain parameter setting is a set of configurations, offering different trade-offs between the objectives. To evaluate and compare solutions to this type of problems, we suggest a robustness indicator that uses a scalarising function combining the main aims of multi-objective optimisation: proximity, diversity and pertinence. The Active Robust Multi-objective Optimisation Problem is formulated in this study, and an evolutionary algorithm that uses the hypervolume measure as a scalarasing function is suggested in order to solve it. Proof-of-concept results are demonstrated using a simplified gearbox optimisation problem for an uncertain load demand

    The Hessian Estimation Evolution Strategy

    Full text link
    We present a novel black box optimization algorithm called Hessian Estimation Evolution Strategy. The algorithm updates the covariance matrix of its sampling distribution by directly estimating the curvature of the objective function. This algorithm design is targeted at twice continuously differentiable problems. For this, we extend the cumulative step-size adaptation algorithm of the CMA-ES to mirrored sampling. We demonstrate that our approach to covariance matrix adaptation is efficient by evaluation it on the BBOB/COCO testbed. We also show that the algorithm is surprisingly robust when its core assumption of a twice continuously differentiable objective function is violated. The approach yields a new evolution strategy with competitive performance, and at the same time it also offers an interesting alternative to the usual covariance matrix update mechanism

    The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: A randomized controlled trial [ISRCTN87413556]

    Get PDF
    BACKGROUND: The management of burn injuries is reported as painful, distressing and a cause of anxiety in children and their parents. Child's and parents' pain and anxiety, often contributes to extended time required for burns management procedures, in particular the process of changing dressings. The traditional method of pharmacologic analgesia is often insufficient to cover the burnt child's pain, and it can have deleterious side effects [1,2]. Intervention with Virtual Reality (VR) games is based on distraction or interruption in the way current thoughts, including pain, are processed by the brain. Research on adults supports the hypothesis that virtual reality has a positive influence on burns pain modulation. METHODS: This study investigates whether playing a virtual reality game, decreases procedural pain in children aged 5–18 years with acute burn injuries. The paper reports on the findings of a pilot study, a randomised trial, in which seven children acted as their own controls though a series of 11 trials. Outcomes were pain measured using the self-report Faces Scale and findings of interviews with parent/carer and nurses. RESULTS: The average pain scores (from the Faces Scale) for pharmacological analgesia only was, 4.1 (SD 2.9), while VR coupled with pharmacological analgesia, the average pain score was 1.3 (SD 1.8) CONCLUSION: The study provides strong evidence supporting VR based games in providing analgesia with minimal side effects and little impact on the physical hospital environment, as well as its reusability and versatility, suggesting another option in the management of children's acute pain

    Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates

    Full text link
    Computational drug design based on artificial intelligence is an emerging research area. At the time of writing this paper, the world suffers from an outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus replication is via protease inhibition. We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA maximizes the binding of candidate ligands to the protein using the docking tool QuickVina 2, while at the same time taking into account further objectives like drug-likeliness or the fulfillment of filter constraints. The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202

    sParEGO – A hybrid optimization algorithm for expensive uncertain multi-objective optimization problems

    Get PDF
    Evaluations of candidate solutions to real-world problems are often expensive to compute, are characterised by uncertainties arising from multiple sources, and involve simultaneous consideration of multiple conflicting objectives. Here, the task of an optimizer is to find a set of solutions that offer alternative robust trade-offs between objectives, where robustness comprises some user-defined measure of the ability of a solution to retain high performance in the presence of uncertainties. Typically, understanding the robustness of a solution requires multiple evaluations of performance under different uncertain conditions – but such an approach is infeasible for expensive problems with a limited evaluation budget. To overcome this issue, a new hybrid optimization algorithm for expensive uncertain multi-objective optimization problems is proposed. The algorithm – sParEGO – uses a novel uncertainty quantification approach to assess the robustness of a candidate design without having to rely on expensive sampling techniques. Hypotheses on the relative performance of the algorithm compared to an existing method for deterministic problems are tested using two benchmark problems, and provide preliminary indication that sParEGO is an effective technique for identifying robust trade-off surfaces

    One PLOT to Show Them All: Visualization of Efficient Sets in Multi-Objective Landscapes

    Full text link
    Visualization techniques for the decision space of continuous multi-objective optimization problems (MOPs) are rather scarce in research. For long, all techniques focused on global optimality and even for the few available landscape visualizations, e.g., cost landscapes, globality is the main criterion. In contrast, the recently proposed gradient field heatmaps (GFHs) emphasize the location and attraction basins of local efficient sets, but ignore the relation of sets in terms of solution quality. In this paper, we propose a new and hybrid visualization technique, which combines the advantages of both approaches in order to represent local and global optimality together within a single visualization. Therefore, we build on the GFH approach but apply a new technique for approximating the location of locally efficient points and using the divergence of the multi-objective gradient vector field as a robust second-order condition. Then, the relative dominance relationship of the determined locally efficient points is used to visualize the complete landscape of the MOP. Augmented by information on the basins of attraction, this Plot of Landscapes with Optimal Trade-offs (PLOT) becomes one of the most informative multi-objective landscape visualization techniques available.Comment: This version has been accepted for publication at the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI

    Directed cell migration in the presence of obstacles

    Get PDF
    BACKGROUND: Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. RESULTS: We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i) the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii) The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. CONCLUSION: Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles

    Evolutionary discriminative confidence estimation for spoken term detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0913-zSpoken term detection (STD) is the task of searching for occurrences of spoken terms in audio archives. It relies on robust confidence estimation to make a hit/false alarm (FA) decision. In order to optimize the decision in terms of the STD evaluation metric, the confidence has to be discriminative. Multi-layer perceptrons (MLPs) and support vector machines (SVMs) exhibit good performance in producing discriminative confidence; however they are severely limited by the continuous objective functions, and are therefore less capable of dealing with complex decision tasks. This leads to a substantial performance reduction when measuring detection of out-of-vocabulary (OOV) terms, where the high diversity in term properties usually leads to a complicated decision boundary. In this paper we present a new discriminative confidence estimation approach based on evolutionary discriminant analysis (EDA). Unlike MLPs and SVMs, EDA uses the classification error as its objective function, resulting in a model optimized towards the evaluation metric. In addition, EDA combines heterogeneous projection functions and classification strategies in decision making, leading to a highly flexible classifier that is capable of dealing with complex decision tasks. Finally, the evolutionary strategy of EDA reduces the risk of local minima. We tested the EDA-based confidence with a state-of-the-art phoneme-based STD system on an English meeting domain corpus, which employs a phoneme speech recognition system to produce lattices within which the phoneme sequences corresponding to the enquiry terms are searched. The test corpora comprise 11 hours of speech data recorded with individual head-mounted microphones from 30 meetings carried out at several institutes including ICSI; NIST; ISL; LDC; the Virginia Polytechnic Institute and State University; and the University of Edinburgh. The experimental results demonstrate that EDA considerably outperforms MLPs and SVMs on both classification and confidence measurement in STD, and the advantage is found to be more significant on OOV terms than on in-vocabulary (INV) terms. In terms of classification performance, EDA achieved an equal error rate (EER) of 11% on OOV terms, compared to 34% and 31% with MLPs and SVMs respectively; for INV terms, an EER of 15% was obtained with EDA compared to 17% obtained with MLPs and SVMs. In terms of STD performance for OOV terms, EDA presented a significant relative improvement of 1.4% and 2.5% in terms of average term-weighted value (ATWV) over MLPs and SVMs respectively.This work was partially supported by the French Ministry of Industry (Innovative Web call) under contract 09.2.93.0966, ‘Collaborative Annotation for Video Accessibility’ (ACAV) and by ‘The Adaptable Ambient Living Assistant’ (ALIAS) project funded through the joint national Ambient Assisted Living (AAL) programme

    Haiku - a Scala combinator toolkit for semi-automated composition of metaheuristics

    Get PDF
    There is an emerging trend towards the automated design of metaheuristics at the software component level. In principle, metaheuristics have a relatively clean decomposition, where well-known frameworks such as ILS and EA are parametrised by variant components for acceptance, perturbation etc. Automated generation of these frameworks is not so simple in practice, since the coupling between components may be implementation specific. Compositionality is the ability to freely express a space of designs ‘bottom up’ in terms of elementary components: previous work in this area has used combinators, a modular and functional approach to componentisation arising from foundational Computer Science. In this article, we describeHaiku, a combinator tool-kit written in the Scala language, which builds upon previous work to further automate the process by automatically composing the external dependencies of components. We provide examples of use and give a case study in which a programatically-generated heuristic is applied to the Travelling Salesman Problem within an Evolutionary Strategies framework

    Evolving DNA motifs to predict GeneChip probe performance

    Get PDF
    Background: Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe. Results: Regular expressions can be automatically created from a Backus-Naur form (BNF) context-free grammar using strongly typed genetic programming. Conclusion: The automatically produced motif is better at predicting poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided. © 2009 Langdon and Harrison; licensee BioMed Central Ltd
    • …
    corecore