15,665 research outputs found

    Quantum properties of two-dimensional electron gas in the inversion layer of Hg1−xCdxTe bicyrstals

    Get PDF
    The electronic and magnetotransport properties of conduction electrons in the grain boundary interface of p-type Hg1−xCdxTe bicrystals are investigated. The results clearly demonstrate the existence of a two-dimensional degenerate n-type inversion layer in the vicinity of the grain boundary. Hydrostatic pressure up to 103 MPa is used to characterize the properties of the two-dimensional electron gas in the inversion layer. At atmospheric pressure three series of quantum oscillations are revealled, indicating that tthree electric subbands are occupied. From quantum oscilations of the magnetoresistivity the characteristics parameters of the electric subbands (subband populations nsi, subband energies EF−Ei, effective electron masses m*ci) and their pressure dependences are established. A strong decrease of the carrier concentration in the inversion layer and of the corresponding subband population is observed when pressure is applied A simple theoretical model based on the triangular-well approximation and taking into account the pressure dependence of the energy band structure of Hg1−xCdxTe is use to calculate the energy band diagram of the quantum well and the pressure dependence of the subband parameters

    Optimization of alloy-analogy-based approaches to the infinite-dimensional Hubbard model

    Full text link
    An analytical expression for the self-energy of the infinite-dimensional Hubbard model is proposed that interpolates between different exactly solvable limits. We profit by the combination of two recent approaches that are based on the alloy-analogy (Hubbard-III) solution: The modified alloy-analogy (MAA) which focuses on the strong-coupling regime, and the Edwards-Hertz approach (EHA) which correctly recovers the weak-coupling regime. Investigating the high-energy expansion of the EHA self-energy, it turns out that the EHA reproduces the first three exactly known moments of the spectral density only. This may be insufficient for the investigation of spontaneous magnetism. The analysis of the high-energy behavior of the CPA self-consistency equation allows for a new interpretation of the MAA: The MAA is the only (two-component) alloy-analogy that correctly takes into account the first four moments of the spectral density. For small U, however, the MAA does not reproduce Fermi-liquid properties. The defects of the MAA as well as of the EHA are avoided in the new approach. We discuss the prospects of the theory and present numerical results in comparison with essentially exact quantum Monte Carlo data. The correct high-energy behavior of the self-energy is proved to be a decisive ingredient for a reliable description of spontaneous magnetism.Comment: LaTeX, 18 pages, 12 eps figures include

    On the magnetic stability at the surface in strongly correlated electron systems

    Full text link
    The stability of ferromagnetism at the surface at finite temperatures is investigated within the strongly correlated Hubbard model on a semi-infinite lattice. Due to the reduced surface coordination number the effective Coulomb correlation is enhanced at the surface compared to the bulk. Therefore, within the well-known Stoner-picture of band ferromagnetism one would expect the magnetic stability at the surface to be enhanced as well. However, by taking electron correlations into account well beyond the Hartree-Fock (Stoner) level we find the opposite behavior: As a function of temperature the magnetization of the surface layer decreases faster than in the bulk. By varying the hopping integral within the surface layer this behavior becomes even more pronounced. A reduced hopping integral at the surface tends to destabilize surface ferromagnetism whereas the magnetic stability gets enhanced by an increased hopping integral. This behavior represents a pure correlation effect and can be understood in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction.Comment: 6 pages, RevTeX, 4 eps figures, accepted (Phys. Rev. B), for related work and info see http://orion.physik.hu-berlin.d

    The parmagnetic electron ring

    Get PDF
    • 

    corecore