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THE PARAMAGNETIC ELECTRON RING
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The motion of electrons (electron rings), that encircle the axis in a cylindrically symmetric magnetic field,
is investigated in the presence of an azimuthal field component B<p for the case of axial acceleration in an
expanding magnetic field. As long as the expansion of the field is small, the particle motion is well described
by the analytical calculations of Merkel4 and even for large expansions with the axial field approaching
zero, the deviations are not very large. The motion of the particles and the electron ring as a whole is
strongly influenced by the sign of B<p. Chosen correctly, the Lorentz-force of the azimuthal field and the
axial ring velocity, that is caused by the expanding field, provides enough radial focussing that the electrons
continue to encircle the axis, if the axial field is zero or even increases with opposite sign (cusp field
arrangement). The electrons then behave paramagnetic with respect to the axial magnetic field.

INTRODUCTION

Electron rings have been proposed! and investigated2 as a vehicle for acceleration
of heavy ions. In the simplest form of an electron ring accelerator, the original
transverse energy of the relativistic electrons is transformed into axial energy in an
expanding magnetic field. In most experiments that have been performed following
this concept electron rings were formed at modest energies at large radii in low fields
and were brought to their final state with high energy and small radius, suitable for
acceleration, by compression in a mirror type magnetic field. During compression
and in the compressed state during the shift of the ring from the mirror field to the
expanding field the ring crossed dangerous betatron resonances that could enlarge
the minor radius of the electron ring and thus reduce the internal electric field, (the
holding power of the ring), which should be maximized for a good performance of
an accelerator.

One proposal to avoid the resonances and their deleterious influence was to apply
an azimuthal magnetic field B<p' in addition to the expanding field. One of the first
to show the beneficial consequences of this proposal was A. Schluter3 . He showed
that main resonances could be avoided by a suitable application of B

qJ
and effects

on acceleration seemed to be tolerable. This proposal was investigated in more detail
by P. Merkel4

. With regard to acceleration the result of his paper was, that the
B<p-field "reduces acceleration, just as if the mass of the ring were increased by a
factor of 1 + (X2, where (X == B<p/Bz is the ratio of the B<p-field to the main field Bz "

the values of B<p and B z taken at the starting point of the expansion acceleration. As
long as this linear theory was applicable this reduction of acceleration was of no
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concern because it could easily be compensated by a faster expanding field. What
however could be the effect on a real accelerator that intends to convert the rotational
energy fully into axial energy? Would the increase of the ring mass also exist in the
nonlinear regime and would this mean, that the final axial energy in the expanding
field would be reduced, e.g. by a factor of 2, if a was chosen to be 1? How would
the ring behave-or at least the single electrons in the ring-, when the ring- or the
single electrons-reaches the area, where the expanding field has decreased to zero
value?

Answers to these questions were sought with the help of computer calculations
that the author performed during his visit to the electron ring group in the
Lawrence-Berkeley-Laboratory in 1972. The results of these calculations were sum­
marized in a comment in an internal reportS that, in its main part, deals with a
different subject (the nonexistence of an instability that had been predicted).

This paper briefly summarizes the effects of the BqJ-field on the particle motion in
linear approximation, following the paper by P. Merkel. It then outlines the main
components of a computer programme for calculation of the particle orbits and finally
describes and discusses the somewhat surprising result.

RING ACCELERATION IN AN EXPANDING FIELD
WITH SUPERIMPOSED BqJ-FIELD

An expanding field obeying Maxwell's equations can be represented in cylindrical
geometry by the following two equations (following Merkel's assumptions4

)

r
B=B·c·-

r 0 2

Bz = Bo(1 - c . z)

The azimuthal field is assumed to be produced by a current, flowing in a rod on the
cylinder axis:

B = _B-'-qJo'----·_R_o
qJ r

Here c is a measure of the non-uniformity of the field, Bo is the value of the axial
field at z = 0, and BqJO is the value of the azimuthal field at the ring position R o for
z = o.

Choosing suitable initial conditions and neglecting radial velocities and accelera­
tion Merkel solves the equation of motion and finds for the axial velocity, Vz ' as a
function of z for small values of c . z an equation which can be written in the following
form:

.m 2 1 m 2
E =_·v =--_·v ·c·z

z 2 z 2 1 + a2 qJo
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This equation implies that the energy of the axial motion increases linearly with
the motion in the expanding field. The energy at a certain point, that is for a certain
reduction of the magnetic field decreases in inverse proportion to 1 + rJ..2.

From this equation it follows that for a pure expanding field accelerator the
beneficial action of the superimposed Bcp- field for stabilizing the ring against betatron
oscillations has to be paid for by a loss in final axial energy, that can be gained.

But apart from the regrettable loss of efficiency of an expanding field accelerator
predicted by the linear theory it seems to be an interesting question to investigate
how far the ring follows the linear assumptions and how the motion of the particles
looks like in the area of the vanishing field. The following calculations will show that
a consequent application of the expanding field method can avoid the loss in
acceleration energy and also show how the particle motion is affected.

CALCULATION OF PARTICLE MOTION

For the calculation of the particle motion relativistic equations of motion have been
used in cylindrical geometry with the components r, qJ and z. The full set of equations
has been used unlike in the analytical calculation of Merkel and the energy equation
has been used only to check the accuracy of the calculations, as in the case without
electric field the energy of the particle should not change.

For the components of the magnetic field the expressions given in the last chapter
have been used. The electric field is zero. For the main case of interest here the
following initial conditions have been chosen:

y == 20

me' y' Vcpo
ro ==

e' Bzo

qJo == Zo == vzo == vro == 0

Bzo == 2[T]

E == l[m- l ]

rJ.. == + 1; 0; -1

With the value of E == 1 the axial magnetic field Bz is zero at z == 1.0 m. me and e are
the rest mass and charge of the electron and y

the relativistic mass factor.
For the content of this paper it is not at all necessary that the electrons are

relativistic. The same· calculations have been performed for low energy electrons of
5 keY (y == 1.01) and give similar results. The initial and general conditions are chosen
here in accordance with the conditions of the electron ring accelerator as the starting
point of this discussion.

P.A.·-C
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COMPARISON WITH MERKEL'S CALCULATIONS

Merkel's calculations of the ring acceleration are only valid for 8 . z ~ 1, but as Figure
1 shows, the differences between the analytical and the computer calculated quantities
are not too large even with 8· Z approaching unity. In Figure 1 a few quantities are
plotted as a function of the axial dimension z for different values of a. As one expects,
the originally transverse velocity of the ring is almost fully transformed into long­
itudinal velocity for a = 0 at z = 1 m, where Bz goes to zero (Figure la). The small
difference between Vz and vlpO is due to radial velocity which is connected with the
radial expansion of the ring.

With a = ±1 the azimuthal velocity stays well above and the axial velocity well
below the corresponding values with a = O. (The oscillations that can be seen on the
figures are due to the initial condition vro = 0, which is not well adapted to the
problem.) The strong decrease in vlp for a = + 1, when approaching z = 1 m, is again
due to the large radial velocity, corresponding to the strong radial expansion, as can
be seen from Figure lc. For a = -1 the ring is even compressed during acceleration.
Figure 1b compares the axial velocity Vz with Merkel's calculations (dashed curves).
The small deviation in the curve for a = 0 is again due to a large radial velocity of
the expanding ring. For a = -1 Merkel's calculation is very good for 8· Z < 0.2. For
larger values 8· z the axial velocity stays well below the Merkel-value, that is, the
conversion from azimuthal to axial energy is even poorer than calculated by Merkel.

The most remarkable point in Figure la, however, is the fact that for a = - 1 the
azimuthal velocity vlp is still large at z = 1 m where Bz becomes zero. On the one
hand this means that indeed only part of the original azimuthal energy of the ring
has been used for acceleration (even less than was expected from the linear calculation
of Merkel) but on the other hand the question arises of what will happen to the
azimuthal velocity when Bz remains zero beyond z = 1 m or if it even changes sign.

THE "PARAMAGNETIC" MOTION OF THE ELECTRON RING

To investigate the question posed in the last section the calculations of the particle
motion were continued beyond z = 1 m. For the magnetic fields chosen B r continues
with the same function of r and does not change the sign. Bz changes the sign and
its absolute value increases with z. Topologically the new arrangement corresponds
to a cusp field with two coils, the axial field direction of which are opposite, instead
of a single expanding coil used up to now.

In Figure 2 the calculated results of the ring motion are plotted for an acceleration
length of 3 ffi. Shown are the values of Blp and Bz (Figure 2c) at the position of the
electron and its velocities vlp and Vz (Figure 2a). Figure 2b gives the radial dependance
on the axial position. The most important result is that Vz is not limited now to the

value (j(X = Vlpo/~ found by Merkel when considering the pure expanding field
with a superimposed Blp' but continues to increase and eventually approaches vlpo·
vlp does not change sign when Bz does. The particle continues to encircle the axis in



AZIMUTHAL FIELD IN ELECTRON RING ACCELERATOR 231

0.20

0.60

vivO
0.80

1.00 "T"'1I!I~--------------------..

~~~~:::::~:::_~~~--------------..~~-
...'-...............

Q = 0 ......... ......
....................

1.00
0.00 -t-----+---_I-----~I----I'----~

0.00 0.20 o. "0 0.60 0.60

Z (M) (a)

5.00 -r----------------+-----~

4.55

R/RO
-1.09

3.6"

3.18 0=+1

2.73

2.27

l.82

1.36

0.91

0.45
Q =-1

1.000.800.600.400.20

0.00 -t-----t-----I------+-----t------t

0.00

Z (M) (b)

l.00 -.-------------------__~---
0=0o

N

>
"­N
>

0.80

0.60

0.40

-//------------------------_.
............--

,,-

0.20

1.00

0.00 ;-----r-----t:-----+I----,II---~

o. 00 o. 20 O. "0 0 . 60 o. 60

Z (M) (c)

FIGURE 1 Particle motion in the expanding field: (a) azimuthal (dashed curves) and axial (full curve)
velocities as a function of distance in the direction of the expanding field for (J. = + 1/0/ - 1; (b) the radius
variation of the particle for (J. = + 1/0/-1; (c) comparison of the numerical calculation of the axial velocity
with Merkel's approximation (dashed curves) for (J. = 0/ - 1
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FIGURE 2 Particle motion in the cusp field arrangement for negative ex: (a) azimuthal (dashed curves)
and axial (full curves) velocities for ex = -0.25/ -0.5/ -0.75/ -1.0/ -1.25. The axial field changes sign at
z = 1m. (b) the radius variation for different ex values. (c) the axial (full curves) and azimuthal (dashed
curves) fields at the particle position for different values of ex.



AZIMUTHAL FIELD IN ELECTRON RING ACCELERATOR 233

the same direction as it did before the axial field changed its sign. The electrons, the
motion of which is generally diamagnetic in a given field, now behave in a paramagne­
tic manner with respect to the axial field. As the plot (Figure 2c) shows the effect is
not small. The electron that starts diamagnetically in an axial field of 2 T is found
in paramagnetic motion at z = 3 m in an axial field of 4 T (for li = -1). The azimuthal
field is of the same order in this case. It does not change the sign at z = 1 m and is
the dominant field there.

The actual motion of the electrons is certainly influenced by the choice of Bq>; its
radial dependence, especially the dependence of the radial velocity on z can be varied
drastically, even the sign of the radial motion can be changed (see Figure 1b). This,
however, does not influence the possibility of "paramagnetic" motion of the particles
and the possibility to fully convert the rotational energy to axial energy. Calculations
have been performed for low energy particles in Bq>-fields that increase with the radius
like in tokamaks with constant current density. The results are qualitatively the same
as the ones discussed here. The internal relation between particle motion and fields
ensures that for li < 0 the particles have gained enough axial velocity at Bz = 0 to
provide sufficient radial force in the Bq>-field for continued rotational motion of the
particles.

SUMMARY AND DISCUSSION

The advantage of avoiding betatron resonances by the application of a Bq>-field does
not have to be paid for (at least in principle, as the stability of the ring has not been
discussed here) by a reduction in acceleration gain. With the correct choice of the
sign of the azimuthal field all of the original transverse energy can be converted to
longitudinal energy, if a field of the form of a cusp field is applied instead of a simple
expanding field. For full conversion the fields, however, may be rather large depending
especially on the choice of li. The longitudinal motion of the electrons in the azimuthal
Bq>-field assures a balancing force to the centripetal force such that the electrons
continue to rotate in the same sense in the inverse axial field as they did in the original
field. With respect to the axial field the electrons are forced to behave in a
paramagnetic manner.

Their rotation frequency around the axis can be expressed in the following form
assuming constant radius in the radial equation of motion:

where W z and wq> are the cyclotron frequencies with the proper sign in the local axial
and azimuthal fields respectively. For negative li one has Bq> > 0 and Vz and vq> are
both positive. B z starts with negative values and goes through zero to positive values.
As long as Bz is negative the diamagnetic effect is enhanced, that is the rotational
frequency of the electron is larger than the cyclotron frequency, corresponding to
the local axial field. If Bz changes sign, the motion becomes highly paramagnetic with
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respect to the local axial field. The validity of the equation for the frequency is not
restricted to particles with relativistic velocities used as an example in this paper. It
will apply also for low energy particles-like ions and electrons in a plasma-as long
as radial acceleration and radial velocities can be neglected in the equation of motion.
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