59 research outputs found

    In Darwin’s Garden: an evolutionary exploration of augmented reality in practice

    Get PDF
    This book is part of the Springer Advanced Information and Knowledge Processing Series and will be published under Springer's Open Access policy.This chapter discusses the rapid developments in augmented reality and mixed reality technologies, from a practitioner’s perspective of making the augmented reality sculptural work In Darwin’s Garden. From its conception in 2012, to its exhibition at Carbon Meets Silicon II in 2017, the advances in augmented reality technology led to an interplay between the goal of the creators and the technological realisation of that vision. The art, design and technology involved, generated a reactive process that was mired in external influences as the accessibility to augmented reality became commercially valuable and subsequently restricted. This chapter will be of interest to anyone who wants to understand more about the possibilities, technologies and processes involved in realising mixed reality practice and about the commercial culture that supports it

    Primeira contribuição dos estudos de sustentabilidade dos sistemas de produção de mandioca (Maniot Esculenta Cratz) pela ferramenta "Análise Emergética".

    Get PDF
    Em julho de 2002, foi lançada a Agenda 21 Brasileira, cujo principal objetivo é o desenvolvimento sustentável propondo o equilíbrio entre o crescimento econômico, a equidade social e a preservação ambiental no planejamento do desenvolvimento do país (BRASIL, 2002). No que se refere à agricultura, visa proporcionar a transformação dos atuais em sistemas de produção agrícola mais sustentáveis. Para programar as ações propostas pela Agenda 21 de forma eficaz, é necessário utilizar ferramentas capazes de avaliar a sustentabilidade dos sistemas de produção e consumo de forma mais objetiva e quantitativa (CAVALETT, 2008). Uma das ferramentas utilizadas e que conta com a aceitação da comunidade científica mundial é denominada "Análise Emergética" (ODUM, 1996), e é considerada entre as mais completas. Segundo Cavalett (2008), ela contabiliza valores das energias naturais incorporadas aos produtos, processos e serviços, geralmente não contabilizados na economia clássica e na análise de energia incorporada. Considera-se, na análise emergética, todos os insumos usados para produzir um certo produto ou serviço, incluindo as contribuições da natureza (chuva, água de poços, nascentes, solo, sedimentos e biodiversidade) e os fornecimentos da economia (materiais, maquinaria, combustível, mão-de-obra, serviços e pagamentos em moeda) e, em alguns casos, as externalidades negativas (erosão do solo, perda da biodiversidade, tratamentos médicos das pessoas e êxodo rural). Até o momento não se dispõe de estudos de sustentabilidade envolvendo a cultura da mandioca que, embora seu apelo social, possui ainda alguns graves gargalos na sua dimensão ambiental, principalmente no que se refere às perdas de solo associadas aos sistemas de produção. O presente trabalho se propõe a avaliar sustentabilidade de um sistema usual de produção de mandioca da região oeste do Paraná, e sua relação com outros sistemas de produção objetos de outros estudos

    MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation

    Full text link
    We study the effect of warm dark matter (WDM) on hydrodynamic simulations of galaxy formation as part of the Making Galaxies in a Cosmological Context (MaGICC) project. We simulate three different galaxies using three WDM candidates of 1, 2 and 5 keV and compare results with pure cold dark matter simulations. WDM slightly reduces star formation and produces less centrally concentrated stellar profiles. These effects are most evident for the 1 keV candidate but almost disappear for mWDM>2m_{\mathrm{WDM}}>2 keV. All simulations form similar stellar discs independent of WDM particle mass. In particular, the disc scale length does not change when WDM is considered. The reduced amount of star formation in the case of 1 keV particles is due to the effects of WDM on merging satellites which are on average less concentrated and less gas rich. The altered satellites cause a reduced starburst during mergers because they trigger weaker disc instabilities in the main galaxy. Nevertheless we show that disc galaxy evolution is much more sensitive to stellar feedback than it is to WDM candidate mass. Overall we find that WDM, especially when restricted to current observational constraints (mWDM>2m_{\mathrm{WDM}}>2 keV), has a minor impact on disc galaxy formation.Comment: 13 pages, 9 figures, 2 tables; minor clarifications added in results section, conclusions unchanged; accepted for publication in MNRA

    Results of two multi-chord stellar occultations by dwarf planet (1) Ceres

    Full text link
    We report the results of two multi-chord stellar occultations by the dwarf planet (1) Ceres that were observed from Brazil on 2010 August 17, and from the USA on 2013 October 25. Four positive detections were obtained for the 2010 occultation, and nine for the 2013 occultation. Elliptical models were adjusted to the observed chords to obtain Ceres' size and shape. Two limb fitting solutions were studied for each event. The first one is a nominal solution with an indeterminate polar aspect angle. The second one was constrained by the pole coordinates as given by Drummond et al. Assuming a Maclaurin spheroid, we determine an equatorial diameter of 972 ±\pm 6 km and an apparent oblateness of 0.08 ±\pm 0.03 as our best solution. These results are compared to all available size and shape determinations for Ceres made so far, and shall be confirmed by the NASA's Dawn space mission.Comment: 9 pages, 6 figures. Accepted for publication in MNRA

    The southern photometric local universe survey (S-PLUS): Improved SEDs, morphologies, and redshifts with 12 optical filters

    Get PDF
    The Southern Photometric Local Universe Survey (S-PLUS) is imaging ~9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8mrobotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 μm pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel-1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30° , 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, Hd, G band, Mg b triplet, Hα, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)3. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ~336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.Fil: De Oliveira, C. Mendes. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Ribeiro, T.. Universidade Federal de Sergipe; Brasil. National Optical Astronomy Observatory; Estados UnidosFil: Schoenell, W.. Universidade Federal do Rio Grande do Sul; BrasilFil: Kanaan, A.. Universidade Federal de Santa Catarina; BrasilFil: Overzier, R.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; BrasilFil: Molino, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Sampedro, L.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Coelho, P.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Barbosa, C.E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Cortesi, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Costa Duarte, M.V.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Herpich, F.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal de Santa Catarina; BrasilFil: Hernandez Jimenez, J.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Placco, V.M.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Xavier, H.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Abramo, L.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Saito, R.K.. Universidade Federal de Santa Catarina; BrasilFil: Chies Santos, A.L.. Universidade Federal do Rio Grande do Sul; BrasilFil: Ederoclite, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: De Oliveira, R. Lopes. Universidade Federal de Sergipe; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. University of Maryland; Estados UnidosFil: Goncalves, D.R.. Universidade Federal do Rio de Janeiro; BrasilFil: Akras, S.. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Almeida, L.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio Grande do Norte; BrasilFil: Almeida Fernandes, F.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Beers, T.C.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Bonatto, C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Bonoli, S.. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: Cypriano, E.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Vinicius Lima, E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentin

    On the discovery of stars, quasars, and galaxies in the Southern Hemisphere with S-PLUS DR2

    Get PDF
    This paper provides a catalogue of stars, quasars, and galaxies for the Southern Photometric Local Universe Survey Data Release 2 (S-PLUS DR2) in the Stripe 82 region. We show that a 12-band filter system (5 Sloan-like and 7 narrow bands) allows better performance for object classification than the usual analysis based solely on broad bands (regardless of infrared information). Moreover, we show that our classification is robust against missing values. Using spectroscopically confirmed sources retrieved from the Sloan Digital Sky Survey DR16 and DR14Q, we train a random forest classifier with the 12 S-PLUS magnitudes + 4 morphological features. A second random forest classifier is trained with the addition of the W1 (3.4 μm) and W2 (4.6 μm) magnitudes from the Wide-field Infrared Survey Explorer (WISE). Forty-four per cent of our catalogue have WISE counterparts and are provided with classification from both models. We achieve 95.76 per cent (52.47 per cent) of quasar purity, 95.88 per cent (92.24 per cent) of quasar completeness, 99.44 per cent (98.17 per cent) of star purity, 98.22 per cent (78.56 per cent) of star completeness, 98.04 per cent (81.39 per cent) of galaxy purity, and 98.8 per cent (85.37 per cent) of galaxy completeness for the first (second) classifier, for which the metrics were calculated on objects with (without) WISE counterpart. A total of 2926 787 objects that are not in our spectroscopic sample were labelled, obtaining 335 956 quasars, 1347 340 stars, and 1243 391 galaxies. From those, 7.4 per cent, 76.0 per cent, and 58.4 per cent were classified with probabilities above 80 per cent. The catalogue with classification and probabilities for Stripe 82 S-PLUS DR2 is available for download. © 2021 The Author(s).This work has been supported by a PhD fellowship to the lead author from Fundacao de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP), 2019/01312-2. LN also acknowledges the support of Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and FAPESP through process number 2014/10566-4. LN also thanks the staff of the Astronomy department from the University of Florida, where part of this work was done; Marco Antonio dos Santos and Ulisses Manzo Castello for the technical support; Luis Manrique for the technical support, feedback, and discussions about Machine Learning; Christian Massao Tsujiguchi Takagi and Vin ' icius Amaral Haga for the feedback on the accessibility of the figures in this paper; Gustavo Oliveira Schwarz for building the database. CMdO acknowledges funding from FAPESP through grants 2009/542028 and 2019/26492-3 and funding from the Brazilian National Research Council (CNPq), through grant 309209/2019-6. NSTH acknowledges FAPESP (grants 2017/25835-9 and 2015/22308-2). CQ acknowledges support from FAPESP (grants 2015/11442-0 and 2019/06766-1). AM acknowledges FAPESP scholarship grant 2018/25671-9. CEB acknowledges FAPESP, grant 2016/12331-0. FA-F acknowledges funding for this work from FAPESP grant 2018/20977-2. LSJ acknowledges support from Brazilian agencies FAPESP (2019/10923-5) and CNPq (304819/201794). AAC acknowledges support from Fundacao de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ; grant E26/203.186/2016) and CNPq (grants 304971/2016-2 and 401669/2016-5). EVL acknowledges funding for this work from CNPq grant 169181/2017-0 and CAPES grant 88887.470064/2019-00. MLB acknowledges FAPESP, grants 2018/09165-6 and 2019/23388-0. KMD acknowledges support from FAPERJ (grant E-26/203.184/2017), CNPq (grant 312702/2017-5) and the Serrapilheira Institute (grant Serra-1709-17357). AAC acknowledges support from FAPERJ (grant E26/203.186/2016), CNPq (grants 304971/2016-2 and 401669/2016-5), from the Universidad de Alicante under contract UATALENTO18-02, and from the State Agency for Research of the Spanish MCIU through the `Center of Excellence Severo Ochoa' award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). ARL acknowledges the financial support from CNPq through the PCI (Programa de Capacitacao Institucional) fellowship. The S-PLUS project, including the T80-South robotic telescope and the S-PLUS scientific survey, was founded as a partnership between FAPESP, the Observatorio Nacional (ON), the Federal University of Sergipe (UFS), and the Federal University of Santa Catarina (UFSC), with important financial and practical contributions from other collaborating institutes in Brazil, Chile (Universidad de La Serena), and Spain (Centro de Estudios de Física del Cosmos de Aragón, CEFCA). We further acknowledge financial support from FAPESP, CNPq, CAPES, FAPERJ, and the Brazilian Innovation Agency (FINEP).Peer reviewe
    corecore