61 research outputs found
Three-Dimensional Microscopy Characterization of Death Receptor 5 Expression by Over-Activated Human Primary CD4+ T Cells and Apoptosis
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4+ T cells in microvesicles
Blocking TLR7- and TLR9-mediated IFN-Ξ± Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection
Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-Ξ± that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-Ξ±, albeit at low levels. pDC mediate a marked but transient IFN-Ξ± response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-Ξ± response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-Ξ± production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-Ξ± production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-Ξ± production may not reduce HIV-associated immunopathology. Β© 2013 Kader et al
Type I Interferons and Interferon Regulatory Factors Regulate TNF-Related Apoptosis-Inducing Ligand (TRAIL) in HIV-1-Infected Macrophages
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages
Interferon-Alpha Administration Enhances CD8+ T Cell Activation in HIV Infection
Type I interferons play important roles in innate immune defense. In HIV infection, type I interferons may delay disease progression by inhibiting viral replication while at the same time accelerating disease progression by contributing to chronic immune activation.To investigate the effects of type I interferons in HIV-infection, we obtained cryopreserved peripheral blood mononuclear cell samples from 10 subjects who participated in AIDS Clinical Trials Group Study 5192, a trial investigating the activity of systemic administration of IFNΞ± for twelve weeks to patients with untreated HIV infection. Using flow cytometry, we examined changes in cell cycle status and expression of activation antigens by circulating T cells and their maturation subsets before, during and after IFNΞ± treatment.The proportion of CD38+HLA-DR+CD8+ T cells increased from a mean of 11.7% at baseline to 24.1% after twelve weeks of interferon treatment (pβ=β0.006). These frequencies dropped to an average of 20.1% six weeks after the end of treatment. In contrast to CD8+ T cells, the frequencies of activated CD4+ T cells did not change with administration of type I interferon (mean percentage of CD38+DR+ cellsβ=β2.62% at baseline and 2.17% after 12 weeks of interferon therapy). As plasma HIV levels fell with interferon therapy, this was correlated with a "paradoxical" increase in CD8+ T cell activation (p<0.001).Administration of type I interferon increased expression of the activation markers CD38 and HLA DR on CD8+ T cells but not on CD4+ T cells of HIV+ persons. These observations suggest that type I interferons may contribute to the high levels of CD8+ T cell activation that occur during HIV infection
Mechanisms of HIV-associated lymphocyte apoptosis: 2010
The inevitable decline of CD4T cells in untreated infection with the Human immunodeficiency virus (HIV) is due in large part to apoptosis, one type of programmed cell death. There is accumulating evidence that the accelerated apoptosis of CD4T cells in HIV infection is multifactorial, with direct viral cytotoxicity, signaling events triggered by viral proteins and aberrant immune activation adding to normal immune defense mechanisms to contribute to this phenomenon. Current antiviral treatment strategies generally lead to reduced apoptosis, but this approach may come at the cost of preserving latent viral reservoirs. It is the purpose of this review to provide an update on the current understanding of the role and mechanisms of accelerated apoptosis of T cells in the immunopathogenesis of HIV infection, and to highlight potential ways in which this seemingly deleterious process could be harnessed to not just control, but treat HIV infection
Major Depletion of Plasmacytoid Dendritic Cells in HIV-2 Infection, an Attenuated Form of HIV Disease
Plasmacytoid dendritic cells (pDC) provide an important link between innate and acquired immunity, mediating their action mainly through IFN-Ξ± production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4 decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of IFN-Ξ± production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-Ξ± inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-Ξ± levels were not elevated in HIV-2 infected individuals. In conclusion, our data in this unique natural model of βattenuatedβ HIV immunodeficiency contribute to the understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion of circulating pDC in association with a relatively preserved IFN-Ξ± production does occur
HIV/SIV Infection Primes Monocytes and Dendritic Cells for Apoptosis
Subversion or exacerbation of antigen-presenting cells (APC) death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs) that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs). We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14+) from SIV+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection
Selective blockade of interferon-Ξ± and -Ξ² reveals their non-redundant functions in a mouse model of West Nile virus infection
Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-Ξ² and the multiple subtypes of IFN-Ξ±, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-Ξ± and IFN-Ξ² have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-Ξ± has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-Ξ² or multiple subtypes of murine IFN-Ξ±. Using these mAbs, we distinguish specific contributions of IFN-Ξ² versus IFN-Ξ± in restricting viral pathogenesis and identify IFN-Ξ± as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-Ξ² versus IFN-Ξ± in murine models of infection, immunity, and autoimmunity
Early Myeloid Dendritic Cell Dysregulation is Predictive of Disease Progression in Simian Immunodeficiency Virus Infection
Myeloid dendritic cells (mDC) are lost from blood in individuals with human immunodeficiency virus (HIV) infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV)-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART) transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis
Critical Loss of the Balance between Th17 and T Regulatory Cell Populations in Pathogenic SIV Infection
Chronic immune activation and progression to AIDS are observed after SIV infection in macaques but not in natural host primate species. To better understand this dichotomy, we compared acute pathogenic SIV infection in pigtailed macaques (PTs) to non-pathogenic infection in African green monkeys (AGMs). SIVagm-infected PTs, but not SIVagm-infected AGMs, rapidly developed systemic immune activation, marked and selective depletion of IL-17-secreting (Th17) cells, and loss of the balance between Th17 and T regulatory (Treg) cells in blood, lymphoid organs, and mucosal tissue. The loss of Th17 cells was found to be predictive of systemic and sustained T cell activation. Collectively, these data indicate that loss of the Th17 to Treg balance is related to SIV disease progression
- β¦