1,029 research outputs found
Fuels and Burners for Domestic Heating
Discusses fuels and burners for domestic heating, including hand-fired coal or coke, automatic coal stoker, gas-fired heaters, oil burners. INlcudes table of comparative fuel costs
Scintillation and charge extraction from the tracks of energetic electrons in superfluid helium-4
An energetic electron passing through liquid helium causes ionization along
its track. The ionized electrons quickly recombine with the resulting positive
ions, which leads to the production of prompt scintillation light. By applying
appropriate electric fields, some of the ionized electrons can be separated
from their parent ions. The fraction of the ionized electrons extracted in a
given applied field depends on the separation distance between the electrons
and the ions. We report the determination of the mean electron-ion separation
distance for charge pairs produced along the tracks of beta particles in
superfluid helium at 1.5 K by studying the quenching of the scintillation light
under applied electric fields. Knowledge of this mean separation parameter will
aid in the design of particle detectors that use superfluid helium as a target
material.Comment: 10 pages, 8 figure
G\"odel Incompleteness and the Black Hole Information Paradox
Semiclassical reasoning suggests that the process by which an object
collapses into a black hole and then evaporates by emitting Hawking radiation
may destroy information, a problem often referred to as the black hole
information paradox. Further, there seems to be no unique prediction of where
the information about the collapsing body is localized. We propose that the
latter aspect of the paradox may be a manifestation of an inconsistent
self-reference in the semiclassical theory of black hole evolution. This
suggests the inadequacy of the semiclassical approach or, at worst, that
standard quantum mechanics and general relavity are fundamentally incompatible.
One option for the resolution for the paradox in the localization is to
identify the G\"odel-like incompleteness that corresponds to an imposition of
consistency, and introduce possibly new physics that supplies this
incompleteness. Another option is to modify the theory in such a way as to
prohibit self-reference. We discuss various possible scenarios to implement
these options, including eternally collapsing objects, black hole remnants,
black hole final states, and simple variants of semiclassical quantum gravity.Comment: 14 pages, 2 figures; revised according to journal requirement
Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions
The stellar mass-luminosity relation (MLR) is one of the most famous
empirical "laws", discovered in the beginning of the 20th century. MLR is still
used to estimate stellar masses for nearby stars, particularly for those that
are not binary systems, hence the mass cannot be derived directly from the
observations. It's well known that the MLR has a statistical dispersion which
cannot be explained exclusively due to the observational errors in luminosity
(or mass). It is an intrinsic dispersion caused by the differences in age and
chemical composition from star to star. In this work we discuss the impact of
age and metallicity on the MLR. Using the recent data on mass, luminosity,
metallicity, and age for 26 FGK stars (all members of binary systems, with
observational mass-errors <= 3%), including the Sun, we derive the MLR taking
into account, separately, mass-luminosity, mass-luminosity-metallicity, and
mass-luminosity-metallicity-age. Our results show that the inclusion of age and
metallicity in the MLR, for FGK stars, improves the individual mass estimation
by 5% to 15%.Comment: 7 pages, 4 figures, 1 table, accepted in Astrophysics and Space
Scienc
Spectral flow and boundary string field theory for angled D-branes
D-branes intersecting at an arbitrary fixed angle generically constitute a
configuration unstable toward recombination. The reconnection of the branes
nucleates at the intersection point and involves a generalization of the
process of brane decay of interest to non-perturbative string dynamics as well
as cosmology. After reviewing the string spectrum of systems of angled branes,
we show that worldsheet twist superfields may be used in the context of
Boundary Superstring Field Theory to describe the dynamics. Changing the angle
between the branes is seen from the worldsheet as spectral flow with boundary
insertions flowing from bosonic to fermionic operators. We calculate the
complete tachyon potential and the low energy effective action as a function of
angle and find an expression that interpolates between the brane-antibrane and
the Dirac-Born-Infeld actions. The potential captures the mechanism of D-brane
recombination and provides for interesting new physics for tachyon decay.Comment: 32 pages, 9 figures; v2 references added; v3 discussion clarifie
Increased bone mineral density in Aboriginal and Torres Strait Islander Australians: Impact of body composition differences
Bone mineral density (BMD) has been reported to be both higher and lower in Indigenous women from different populations. Body composition data have been reported for Indigenous Australians, but there are few published BMD data in this population. We assessed BMD in 161 Indigenous Australians, identified as Aboriginal (n = 70), Torres Strait Islander (n = 68) or both (n = 23). BMD measurements were made on Norland-XR46 (n = 107) and Hologic (n = 90) dual-energy X-ray absorptiometry (DXA) machines. Norland BMD and body composition measurements in these individuals, and also in 36 Caucasian Australians, were converted to equivalent Hologic BMD (BMDH) and body composition measurements for comparison
DT/T beyond linear theory
The major contribution to the anisotropy of the temperature of the Cosmic
Microwave Background (CMB) radiation is believed to come from the interaction
of linear density perturbations with the radiation previous to the decoupling
time. Assuming a standard thermal history for the gas after recombination, only
the gravitational field produced by the linear density perturbations present on
a universe can generate anisotropies at low z (these
anisotropies would manifest on large angular scales). However, secondary
anisotropies are inevitably produced during the nonlinear evolution of matter
at late times even in a universe with a standard thermal history. Two effects
associated to this nonlinear phase can give rise to new anisotropies: the
time-varying gravitational potential of nonlinear structures (Rees-Sciama RS
effect) and the inverse Compton scattering of the microwave photons with hot
electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two
effects can produce distinct imprints on the CMB temperature anisotropy. We
discuss the amplitude of the anisotropies expected and the relevant angular
scales in different cosmological scenarios. Future sensitive experiments will
be able to probe the CMB anisotropies beyong the first order primary
contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance
School on Astrophysics "The universe at high-z, large-scale structure and the
cosmic microwave background". To be publised by Springer-Verla
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Degradation mechanism analysis in temperature stress tests on III-V ultra-high concentrator solar cells using a 3D distributed model
A temperature stress test was carried out on GaAs single-junction solar cells to analyze the degradation suffered when working at ultra-high concentrations. The acceleration of the degradation was realized at two different temperatures: 130 °C and 150 °C. In both cases, the degradation trend was the same, and only gradual failures were observed. A fit of the dark I–V curve at 25 °C with a 3D distributed model before and after the test was done. The fit with the 3D distributed model revealed degradation at the perimeter because the recombination current in the depletion region of the perimeter increased by about fourfold after the temperature stress test. Therefore, this test did not cause any morphological change in the devices, and although the devices were isolated with silicone, the perimeter region was revealed as the most fragile component of the solar cell. Consequently, the current flowing beneath the busbar favors the progression of defects in the device in the perimeter region
Is cosmology consistent?
We perform a detailed analysis of the latest CMB measurements (including
BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other
cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha
Forest. We first address the question of whether the CMB data are internally
consistent once calibration and beam uncertainties are taken into account,
performing a series of statistical tests. With a few minor caveats, our answer
is yes, and we compress all data into a single set of 24 bandpowers with
associated covariance matrix and window functions. We then compute joint
constraints on the 11 parameters of the ``standard'' adiabatic inflationary
cosmological model. Out best fit model passes a series of physical consistency
checks and agrees with essentially all currently available cosmological data.
In addition to sharp constraints on the cosmic matter budget in good agreement
with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest
neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity
waves which (together with preference for a slight red-tilt) favors
``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny
changes due to smaller DASI & Maxima calibration errors. Expanded neutrino
and tensor discussion, added refs, typos fixed. Combined CMB data, window and
covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from
[email protected]
- …
