40 research outputs found
Coulomb and nuclear breakup effects in the single neutron removal reaction 197Au(17C,16C gamma)X
We analyze the recently obtained new data on the partial cross sections and
parallel momentum distributions for transitions to ground as well as excited
states of the 16C core, in the one-neutron removal reaction 197Au(17C,16C
gamma)X at the beam energy of 61 MeV/nucleon. The Coulomb and nuclear breakup
components of the one-neutron removal cross sections have been calculated
within a finite range distorted wave Born approximation theory and an eikonal
model, respectively. The nuclear contributions dominate the partial cross
sections for the core excited states. By adding the nuclear and Coulomb cross
sections together, a reasonable agreement is obtained with the data for these
states. The shapes of the experimental parallel momentum distributions of the
core states are described well by the theory.Comment: Revtex format, two figures included, to appear in Phys. Rev. C.
(Rapid communications
Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity
Coccidiosis is one of the biggest challenges faced by the global poultry industry. Recent studies have highlighted the ubiquitous distribution of all Eimeria species which can cause this disease in chickens, but intriguingly revealed a regional divide in genetic diversity and population structure for at least one species, Eimeria tenella. The drivers associated with such distinct geographic variation are unclear, but may impact on the occurrence and extent of resistance to anticoccidial drugs and future subunit vaccines. India is one of the largest poultry producers in the world and includes a transition between E. tenella populations defined by high and low genetic diversity. The aim of this study was to identify risk factors associated with the prevalence of Eimeria species defined by high and low pathogenicity in northern and southern states of India, and seek to understand factors which vary between the regions as possible drivers for differential genetic variation. Faecal samples and data relating to farm characteristics and management were collected from 107 farms from northern India and 133 farms from southern India. Faecal samples were analysed using microscopy and PCR to identify Eimeria occurrence. Multiple correspondence analysis was applied to transform correlated putative risk factors into a smaller number of synthetic uncorrelated factors. Hierarchical cluster analysis was used to identify poultry farm typologies, revealing three distinct clusters in the studied regions. The association between clusters and presence of Eimeria species was assessed by logistic regression. The study found that large-scale broiler farms in the north were at greatest risk of harbouring any Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. Comparison revealed a more even distribution for E. tenella across production systems in south India, but with a lower overall occurrence. Such a polarised region- and system-specific distribution may contribute to the different levels of genetic diversity observed previously in India and may influence parasite population structure across much of Asia and Africa. The findings of the study can be used to prioritise target farms to launch and optimise appropriate anticoccidial strategies for long-term control
Core excitation in Coulomb breakup reactions
Within the pure Coulomb breakup mechanism, we investigate the one-neutron
removal reaction of the type A(a,b)X with Be and C
projectiles on a heavy target nucleus Pb at the beam energy of 60
MeV/nucleon. Our intention is to examine the prospective of using these
reactions to study the structure of neutron rich nuclei. Integrated partial
cross sections and momentum distributions for the ground as well as excited
bound states of core nuclei are calculated within the finite range distorted
wave Born approximation as well as within the adiabatic model of the Coulomb
breakup. Our results are compared with those obtained in the studies of the
reactions on a light target where the breakup proceeds via the pure nuclear
mechanism. We find that the transitions to excited states of the core are quite
weak in the Coulomb dominated process as compared to the pure nuclear breakup.Comment: Revtex format, five postscript figures included, to appear in Phys.
Rev.
Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation
<p>Abstract</p> <p>Background</p> <p>Epigenetic changes associated with promoter DNA methylation results in silencing of several tumor suppressor genes that lead to increased risk for tumor formation and for progression of the cancer.</p> <p>Methods</p> <p>Methylation specific PCR (MSP) and bisulfite sequencing were used for determination of proapoptotic gene Caspase 8 (CASP8) and the tumor suppressor gene maspin promoter methylation in four breast cancer and two non-tumorigenic breast cell lines. Involvement of histone H3 methylation in those cell lines were examined by CHIP assay.</p> <p>Results</p> <p>The CpG sites in the promoter region of CASP8 and maspin were methylated in all four breast cancer cell lines but not in two non-tumorigenic breast cell lines. Demethylation agent 5-aza-2'-deoxycytidine (5-aza-dc) selectively inhibits DNA methyltransferases, DNMT3a and DNMT3b, and restored CASP8 and maspin gene expression in breast cancer cells. 5-aza-dc also reduced histone H3k9me2 occupancy on CASP8 promoter in SKBR3cells, but not in MCF-7 cells. Combination of histone deacetylase inhibitor Trichostatin A (TSA) and 5-aza-dc significant decrease in nuclear expression of Di-methyl histone H3-Lys27 and slight increase in acetyl histone H3-Lys9 in MCF-7 cells. CASP8 mRNA and protein level in MCF-7 cells were increased by the 5-aza-dc in combination with TSA. Data from our study also demonstrated that treatment with 5-FU caused a significant increase in unmethylated CASP8 and in CASP8 mRNA in all 3 cancer lines.</p> <p>Conclusions</p> <p>CASP8 and maspin expression were reduced in breast cancer cells due to promoter methylation. Selective application of demethylating agents could offer novel therapeutic opportunities in breast cancer.</p