1,652 research outputs found

    Clinical review: Guyton - the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output

    Get PDF
    Arthur Guyton's concepts of the determinative role of right heart filling in cardiac output continue to be controversial. This paper reviews his seminal experiments in detail and clarifies the often confusing concepts underpinning his model. One primary criticism of Guyton's model is that the parameters describing venous return had not been measured in a functioning cardiovascular system in humans. Thus, concerns have been expressed in regard to the ability of Guyton's simplistic model, with few parameters, to model the complex human circulation. Further concerns have been raised in regard to the artificial experimental preparations that Guyton used. Recently reported measurements in humans support Guyton's theoretical and animal work

    A Method to have Multi-Layer Thermal Insulation Provide Damage Detection

    Get PDF
    Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented

    A quantum measure of coherence and incompatibility

    Full text link
    The well-known two-slit interference is understood as a special relation between observable (localization at the slits) and state (being on both slits). Relation between an observable and a quantum state is investigated in the general case. It is assumed that the amount of ceherence equals that of incompatibility between observable and state. On ground of this, an argument is peresented that leads to a natural quantum measure of coherence, called "coherence or incompatibility information". Its properties are studied in detail making use of 'the mixing property of relative entropy' derived in this article. A precise relation between the measure of coherence of an observable and that of its coarsening is obtained and discussed from the intutitive point of view. Convexity of the measure is proved, and thus the fact that it is an information entity is established. A few more detailed properties of coherence information are derived with a view to investigate final-state entanglement in general repeatable measurement, and, more importantly, general bipartite entanglement in follow ups of this study.Comment: 19 GS pages; supercedes quant-ph/030921

    Actively Controlling Buffet-Induced Excitations

    Get PDF
    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein

    Controlling Buffeting Loads by Rudder and Piezo-Actuation

    Get PDF
    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These stochastic loads result in significant stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active Buffet Load Alleviation ( ) control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein

    Human Modeling for Ground Processing Human Factors Engineering Analysis

    Get PDF
    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft design

    Lower Rotational Inertia and Larger Leg Muscles Indicate More Rapid Turns in Tyrannosaurids Than in Other Large Theropods

    Get PDF
    Synopsis: Tyrannosaurid dinosaurs had large preserved leg muscle attachments and low rotational inertia relative to their body mass, indicating that they could turn more quickly than other large theropods. Methods: To compare turning capability in theropods, we regressed agility estimates against body mass, incorporating superellipse-based modeled mass, centers of mass, and rotational inertia (mass moment of inertia). Muscle force relative to body mass is a direct correlate of agility in humans, and torque gives potential angular acceleration. Agility scores therefore include rotational inertia values divided by proxies for (1) muscle force (ilium area and estimates of m. caudofemoralis longus cross-section), and (2) musculoskeletal torque. Phylogenetic ANCOVA (phylANCOVA) allow assessment of differences in agility between tyrannosaurids and non-tyrannosaurid theropods (accounting for both ontogeny and phylogeny). We applied conditional error probabilities a(p) to stringently test the null hypothesis of equal agility. Results: Tyrannosaurids consistently have agility index magnitudes twice those of allosauroids and some other theropods of equivalent mass, turning the body with both legs planted or pivoting over a stance leg. PhylANCOVA demonstrates definitively greater agilities in tyrannosaurids, and phylogeny explains nearly all covariance. Mass property results are consistent with those of other studies based on skeletal mounts, and between different figure-based methods (our main mathematical slicing procedures, lofted 3D computer models, and simplified graphical double integration). Implications: The capacity for relatively rapid turns in tyrannosaurids is ecologically intriguing in light of their monopolization of large (\u3e400 kg), toothed dinosaurian predator niches in their habitats

    Quantifying Entanglement Production of Quantum Operations

    Full text link
    The problem of entanglement produced by an arbitrary operator is formulated and a related measure of entanglement production is introduced. This measure of entanglement production satisfies all properties natural for such a characteristic. A particular case is the entanglement produced by a density operator or a density matrix. The suggested measure is valid for operations over pure states as well as over mixed states, for equilibrium as well as nonequilibrium processes. Systems of arbitrary nature can be treated, described either by field operators, spin operators, or any other kind of operators, which is realized by constructing generalized density matrices. The interplay between entanglement production and phase transitions in statistical systems is analysed by the examples of Bose-Einstein condensation, superconducting transition, and magnetic transitions. The relation between the measure of entanglement production and order indices is analysed.Comment: 20 pages, Revte

    Rapid elimination of CO through the lungs: coming full circle 100 years on

    Get PDF
    At the start of the 20th century, CO poisoning was treated by administering a combination of CO2 and O2 (carbogen) to stimulate ventilation. This treatment was reported to be highly effective, even reversing the deep coma of severe CO poisoning before patients arrived at the hospital. The efficacy of carbogen in treating CO poisoning was initially attributed to the absorption of CO2; however, it was eventually realized that the increase in pulmonary ventilation was the predominant factor accelerating clearance of CO from the blood. The inhaled CO2 in the carbogen stimulated ventilation but prevented hypocapnia and the resulting reductions in cerebral blood flow. By then, however, carbogen treatment for CO poisoning had been abandoned in favour of hyperbaric O2. Now, a half-century later, there is accumulating evidence that hyperbaric O2 is not efficacious, most probably because of delays in initiating treatment. We now also know that increases in pulmonary ventilation with O2-enriched gas can clear CO from the blood as fast, or very nearly as fast, as hyperbaric O2. Compared with hyperbaric O2, the technology for accelerating pulmonary clearance of CO with hyperoxic gas is not only portable and inexpensive, but also may be far more effective because treatment can be initiated sooner. In addition, the technology can be distributed more widely, especially in developing countries where the prevalence of CO poisoning is highest. Finally, early pulmonary CO clearance does not delay or preclude any other treatment, including subsequent treatment with hyperbaric O2
    corecore