12 research outputs found

    Intersection problem for Droms RAAGs

    Get PDF
    We solve the subgroup intersection problem (SIP) for any RAAG G of Droms type (i.e., with defining graph not containing induced squares or paths of length 3): there is an algorithm which, given finite sets of generators for two subgroups H,K of G, decides whether HKH \cap K is finitely generated or not, and, in the affirmative case, it computes a set of generators for HKH \cap K. Taking advantage of the recursive characterization of Droms groups, the proof consists in separately showing that the solvability of SIP passes through free products, and through direct products with free-abelian groups. We note that most of RAAGs are not Howson, and many (e.g. F_2 x F_2) even have unsolvable SIP.Comment: 33 pages, 12 figures (revised following the referee's suggestions

    Distribution of Hard Tick Species in Ankara, Turkey

    No full text
    A systematic study has been carried out on hard ticks from Ankara Province, Turkey. Between April 2010 and July 2012, 1800 tick specimens belonging to 9 species were identified at 31 locations in 9 districts. Tick species are listed as follows: Rhipicephalus sanguineus group (43.44%), Rhipicephalus bursa (36.67%), Hyalomma marginatum (8.83%), Haemaphysalis parva (6%), Hyalomma aegyptium (2.39%), Hyalomma excavatum (1.33%), Dermacentor marginatus (1.06%), Haemaphysalis punctata (0.22%), and Hyalomma detritum (0.06%). Ticks were collected from host animals and from vegetation via the flagging method. The species of the genus Rhipicephalus were present in most of the study areas, the most common being the Rhipicephalus sanguineus group (20/31). Hyalomma species were mostly collected from host animals, with Hyalomma marginatum being the most common species in this genus (8.83%). We also observed seasonal variations in abundance, with the highest number in May. The district with the most abundant ticks was determined to be Kizilcahamam, which had the highest tick abundance rate of 28.6%.WoSScopu

    A molecular phylogenetic investigation of tick species in Eastern and Southeastern Anatolia

    No full text
    Understanding the local tick species composition is crucial for overcoming the diseases they transmit. A comprehensive survey integrating molecular identification was conducted in the eastern and southeastern parts of Turkey, where tick surveys have previously been neglected. A total of 596 specimens belonging to four tick genera were collected from 27 localities in Turkey during the summers of 2019 and 2020. Seventy-seven representative individuals were chosen for molecular analysis. Nine distinct species, Rhipicephalus bursa, Rhipicephalus turanicus, Rhipicephalus rossicus, Hyalomma asiaticum, Hyalomma excavatum, Hyalomma marginatum, Hyalomma aegyptium, Haemaphysalis sulcata, and Dermacentor marginatus were identified. The presence of R. rossicus was demonstrated for the first time in Turkey. Two lineages of R. turanicus were identified, and representatives of both lineages were recorded. Our Hyalomma phylogenetic tree was consistent with previous findings from Turkey; however, new sympatric areas for Hy. marginatum and Hy. excavatum and Hy. marginatum and Hy. asiaticum were recorded. Two haplotypes (Haemaphysalis sp. and Dermacentor sp.) could not be identified using morphological and molecular methods. In addition to making a valuable contribution to the molecular database of ticks in the Middle East, this study will also stimulate comparative studies on the genetic structure, ecology, and vector competence of different populations of these species in Turkey as well as in other parts of the world

    A Cross-Sectional Screening By Next-Generation Sequencing Reveals Rickettsia, Coxiella, Francisella, Borrelia, Babesia, Theileria And Hemolivia Species In Ticks From Anatolia

    Get PDF
    Background Ticks participate as arthropod vectors in the transmission of pathogenic microorganisms to humans. Several tick-borne infections have reemerged, along with newly described agents of unexplored pathogenicity. In an attempt to expand current information on tick-associated bacteria and protozoans, we performed a cross-sectional screening of ticks, using next-generation sequencing. Ticks seeking hosts and infesting domestic animals were collected in four provinces across the Aegean, Mediterranean and Central Anatolia regions of Turkey and analyzed by commonly used procedures and platforms. Results Two hundred and eighty ticks comprising 10 species were evaluated in 40 pools. Contigs from tick-associated microorganisms were detected in 22 (55%) questing and 4 feeding (10%) tick pools, with multiple microorganisms identified in 12 pools. Rickettsia 16S ribosomal RNA gene, gltA, sca1 and ompA sequences were present in 7 pools (17.5%), comprising feeding Haemaphysalis parva and questing/hunting Rhipicephalus bursa, Rhipicephalus sanguineus (sensu lato) and Hyalomma marginatum specimens. A near-complete genome and conjugative plasmid of a Rickettsia hoogstraalii strain could be characterized in questing Ha. parva. Coxiella-like endosymbionts were identified in pools of questing (12/40) as well as feeding (4/40) ticks of the genera Rhipicephalus, Haemaphysalis and Hyalomma. Francisella-like endosymbionts were also detected in 22.5% (9/40) of the pools that comprise hunting Hyalomma ticks in 8 pools. Coxiella-like and Francisella-like endosymbionts formed phylogenetically distinct clusters associated with their tick hosts. Borrelia turcica was characterized in 5% (2/40) of the pools, comprising hunting Hyalomma aegyptium ticks. Co-infection of Coxiella-like endosymbiont and Babesia was noted in a questing R. sanguineus (s.l.) specimen. Furthermore, protozoan 18S rRNA gene sequences were detected in 4 pools of questing/hunting ticks (10%) and identified as Babesia ovis, Hemolivia mauritanica, Babesia and Theileria spp. Conclusions Our metagenomic approach enabled identification of diverse pathogenic and non-pathogenic microorganisms in questing and feeding ticks in Anatolia. Electronic supplementary material The online version of this article (10.1186/s13071-018-3277-7) contains supplementary material, which is available to authorized users.PubMedWoSScopu
    corecore