217 research outputs found

    The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    Get PDF
    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r', i' and H{\alpha} filters. It is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5{\sigma} depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4{\sigma} X-ray error circle. This analysis yields 1480 potential counterparts (~ 90 per cent of the sample). 584 counterparts have saturated photometry (r'<17, i'<16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i'-band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.Comment: 18 pages, 18 figures. Published in MNRAS. 2016MNRAS.458.4530

    The Relationship Between X-ray Luminosity and Duty Cycle for Dwarf Novae and their Specific Frequency in the Inner Galaxy

    Get PDF
    We measure the duty cycles for an existing sample of well observed, nearby dwarf novae using data from AAVSO, and present a quantitative empirical relation between the duty cycle of dwarf novae outbursts and the X-ray luminosity of the system in quiescence. We have found that logDC=0.63(±0.21)×(logLX(ergs1)31.3)0.95(±0.1)\log DC=0.63(\pm0.21)\times(\log L_{X}({\rm erg\,s^{-1}})-31.3)-0.95(\pm0.1), where DC stands for duty cycle. We note that there is intrinsic scatter in this relation greater than what is expected from purely statistical errors. Using the dwarf nova X-ray luminosity functions from \citet{Pretorius12} and \citet{Byckling10}, we compare this relation to the number of dwarf novae in the Galactic Bulge Survey which were identified through optical outbursts during an 8-day long monitoring campaign. We find a specific frequency of X-ray bright (LX>1031ergs1L_{X}>10^{31}\,{\rm erg\,s^{-1}}) Cataclysmic Variables undergoing Dwarf Novae outbursts in the direction of the Galactic Bulge of 6.6±4.7×105M16.6\pm4.7\times10^{-5}\,M_{\odot}^{-1}. Such a specific frequency would give a Solar neighborhood space density of long period CVs of ρ=5.6±3.9×106\rho=5.6\pm3.9\times10^{-6}\,pc3^{-3}. We advocate the use of specific frequency in future work, given that projects like LSST will detect DNe well outside the distance range over which ρconst\rho\approx{\textrm const}.Comment: 9 pagers, 4 figures Accepted for publication in MNRA

    Constraining the nature of the accreting binary in CXOGBS J174623.5-310550

    Get PDF
    We report optical and infrared observations of the X-ray source CXOGBS J174623.5-310550. This Galactic object was identified as a potential quiescent low-mass X-ray binary accreting from an M-type donor on the basis of optical spectroscopy and the broad Halpha emission line. The analysis of X-shooter spectroscopy covering 3 consecutive nights supports an M2/3-type spectral classification. Neither radial velocity variations nor rotational broadening is detected in the photospheric lines. No periodic variability is found in I- and r'-band light curves. We derive r' = 20.8, I = 19.2 and Ks = 16.6 for the optical and infrared counterparts with the M-type star contributing 90% to the I-band light. We estimate its distance to be 1.3-1.8 kpc. The lack of radial velocity variations implies that the M-type star is not the donor star in the X-ray binary. This could be an interloper or the outer body in a hierarchical triple. We constrain the accreting binary to be a < 2.2 hr orbital period eclipsing cataclysmic variable or a low-mass X-ray binary lying in the foreground of the Galactic Bulge.Comment: (9 pages, 5 figures, accepted for publication in MNRAS

    Caracterização de Genótipos de Cebola Quanto ao Conteúdo de Quercetina.

    Get PDF
    bitstream/CPACT-2010/12918/1/documento-277.pd

    Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    Get PDF
    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multi-wavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ±\pm 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an AGN or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In 4 cases we identify the sources as binary stars.Comment: Accepted for publication in MNRA

    Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    Get PDF
    We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from 2\sim2 hr to 8 days over the 34\frac{3}{4} of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. 87%87\% of X-ray sources have at least one potential optical counterpart. 24%24\% of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.Comment: Accepted for publication in the Astrophysical Journal Supplement

    Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    Get PDF
    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He i absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical lightcurve from Optical Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no evidence for outbursts; variability is present at the 0.2 mag level on timescales ranging from hours to weeks. A modulation on a timescale of years is also observed. A Lomb-Scargle analysis of the optical lightcurves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such timescales are in line with expectations for the orbital and superhump periods. We estimate the distance to the source to be between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to establish the orbital period, and to determine whether this source can serve as a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter

    The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    Get PDF
    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record
    corecore