68 research outputs found

    Increasing dominance of large lianas in Amazonian forests

    Get PDF
    Ecological orthodoxy suggests that old-growth forests should be close to dynamic equilibrium, but this view has been challenged by recent findings that neotropical forests are accumulating carbon and biomass, possibly in response to the increasing atmospheric concentrations of carbon dioxide. However, it is unclear whether the recent increase in tree biomass has been accompanied by a shift in community composition. Such changes could reduce or enhance the carbon storage potential of old-growth forests in the long term. Here we show that non-fragmented Amazon forests are experiencing a concerted increase in the density, basal area and mean size of woody climbing plants (lianas). Over the last two decades of the twentieth century the dominance of large lianas relative to trees has increased by 1.7–4.6% a year. Lianas enhance tree mortality and suppress tree growth, so their rapid increase implies that the tropical terrestrial carbon sink may shut down sooner than current models suggest. Predictions of future tropical carbon fluxes will need to account for the changing composition and dynamics of supposedly undisturbed forests

    Repeat-element RNAs integrate a neuronal growth circuit

    Get PDF
    \ua9 2025 The Author(s)Neuronal growth and regeneration are regulated by local translation of mRNAs in axons. We examined RNA polyadenylation changes upon sensory neuron injury and found upregulation of a subset of polyadenylated B2-SINE repeat elements, hereby termed GI-SINEs (growth-inducing B2-SINEs). GI-SINEs are induced from ATF3 and other AP-1 promoter-associated extragenic loci in injured sensory neurons but are not upregulated in lesioned retinal ganglion neurons. Exogenous GI-SINE expression elicited axonal growth in injured sensory, retinal, and corticospinal tract neurons. GI-SINEs interact with ribosomal proteins and nucleolin, an axon-growth-regulating RNA-binding protein, to regulate translation in neuronal cytoplasm. Finally, antisense oligos against GI-SINEs perturb sensory neuron outgrowth and nucleolin-ribosome interactions. Thus, a specific subfamily of transposable elements is integral to a physiological circuit linking AP-1 transcription with localized RNA translation

    Canonical BMP–Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons

    Full text link
    Ventral midbrain (VM) dopaminergic (DA) neurons project to the dorsal striatum via the nigrostriatal pathway to regulate voluntary movements, and their loss leads to the motor dysfunction seen in Parkinson’s disease (PD). Despite recent progress in the understanding of VM DA neurogenesis, the factors regulating nigrostriatal pathway development remain largely unknown. The bone morphogenetic protein (BMP) family regulates neurite growth in the developing nervous system and may contribute to nigrostriatal pathway development. Two related members of this family, BMP2 and growth differentiation factor (GDF)5, have neurotrophic effects, including promotion of neurite growth, on cultured VM DA neurons. However, the molecular mechanisms regulating their effects on DA neurons are unknown. By characterising the temporal expression profiles of endogenous BMP receptors (BMPRs) in the developing and adult rat VM and striatum, this study identified BMP2 and GDF5 as potential regulators of nigrostriatal pathway development. Furthermore, through the use of noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway

    Elevational patterns of species richness and density of rattan palms (Arecaceae: Calamoideae) in Central Sulawesi, Indonesia

    Get PDF
    We studied species richness and density of rattan palms in 50 plots of 10 × 100 m2 each between 250 m and 2420 m in eight sites in Lore Lindu National Park (LLNP), Central Sulawesi. Rattans were observed in all sample sites, representing three genera and 34 species. The elevational patterns for species richness and density were humped-shaped with maxima around 1000 m. Polynomial models of second order explained 59 and 32% of species richness and density with the factor elevation, respectively. A majority of rattan species (65%) overlapped between 1000 and 1100 m elevation, while a pronounced change in the rattan flora occurred above 1100 m. Commercially important rattan species (Calamus zollingeri, C. ornatus var. celebicus, Daemonorops macroptera) were not observed above 1250 m. The change of species assemblage was significantly related to elevation (56%), followed by geographical distance (47%) and precipitation (40%). Less than 10% of LLNP is lowland forests, much of which is threatened by agricultural intensification. In contrast, montane forests are well represented in the park and high elevation forests are not subject to agricultural conversion or intensive harvesting of rattan and other forest products
    corecore