12,915 research outputs found
IR emission and UV extinction in two open clusters
Recent models of interstellar extinction have shown the importance of understanding both the UV and IR properties of interstellar dust grains. IRAS data have shown variations in 60 and 100 micron emissions presumably due to the presence of IR cirrus, while recent observations in the UV by Fitzpatrick and Massa have identified components in the UV extinction curve which vary in different star regions. A Draine and Anderson model connects these results by proposing that different size variations in interstellar grains would cause distinct changes in both the IR emission and the UV extinction. In order to test this model it is necessary to make observations in well defined locations away from peculiar extinction regions. In the infrared this means looking away from the galactic plane so as to limit non-local sources of IR radiation. Two open clusters that are out of the galactic plane and which contain a number of late B and early A stars suitable for UV extinction studies, and whose IRAS data show variations in the 60/100 micron ratio were studied. Based on the Drain and Anderson model, variations were expected in their UV extinction curves that correlate with the IR cirrus emission
Wave functions and their use in spectroscopy and phenomenology
We describe the calculation of Coulomb gauge wave functions for light quark
systems, and their use as interpolating fields for excited state spectroscopy.Comment: 4 pages latex with lat92 macro plus 4 postscript figs, COLO-HEP-29
Computing aerodynamic sound using advanced statistical turbulence theories
It is noted that the calculation of turbulence-generated aerodynamic sound requires knowledge of the spatial and temporal variation of Q sub ij (xi sub k, tau), the two-point, two-time turbulent velocity correlations. A technique is presented to obtain an approximate form of these correlations based on closure of the Reynolds stress equations by modeling of higher order terms. The governing equations for Q sub ij are first developed for a general flow. The case of homogeneous, stationary turbulence in a unidirectional constant shear mean flow is then assumed. The required closure form for Q sub ij is selected which is capable of qualitatively reproducing experimentally observed behavior. This form contains separation time dependent scale factors as parameters and depends explicitly on spatial separation. The approximate forms of Q sub ij are used in the differential equations and integral moments are taken over the spatial domain. The velocity correlations are used in the Lighthill theory of aerodynamic sound by assuming normal joint probability
Reliability measurement during software development
During the development of data base software for a multi-sensor tracking system, reliability was measured. The failure ratio and failure rate were found to be consistent measures. Trend lines were established from these measurements that provided good visualization of the progress on the job as a whole as well as on individual modules. Over one-half of the observed failures were due to factors associated with the individual run submission rather than with the code proper. Possible application of these findings for line management, project managers, functional management, and regulatory agencies is discussed. Steps for simplifying the measurement process and for use of these data in predicting operational software reliability are outlined
A HIERARCHICAL BAYES APPROACH TO MODELING CHOICE DATA: A STUDY OF WETLAND RESTORATION PROGRAMS
This study examines the factors the influence the values and importance that landowners place on the attributes of voluntary wetland restoration programs. Choice-based conjoint analysis, a stated preference method, was used to estimate the marginal utilities and values for restoration program attributes for North Carolina landowners. Landowner preferences were estimated at individual and aggregate levels to examine the importance of modeling heterogeneous preferences. Choice modeling performed at both aggregate and individual levels demonstrated the information gains from a disaggregated approach.Research Methods/ Statistical Methods,
Observational constraints on interstellar dust models
No single model has been able to account for all of the observed spectroscopic properties of interstellar or circumstellar dust. The reason for this is that, despite the agreement that the grains are composed of silicaceous/metal oxide and carbonaceous material, there is strong disagreement as to their exact structure and composition. This led Draine and Lee (1984) to use interstellar extinction data to define an interstellar graphitic material; new observational findings have made even that identification uncertain. But the great advantage of their approach is that they used observations at all of the wavelengths available to define the material. Here, the authors attempt a variation of that approach. They examine recent UV and IR data and attempt to put constraints on the possible types of interstellar grain composition, and to connect these constraints with grain models. A summary of some of the important constraints imposed by the observations is given
Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials: Experiment and theory
We have experimentally realized Brewster's effect for transverse-electric
waves with metamaterials. In dielectric media, Brewster's no-reflection effect
arises only for transverse-magnetic waves. However, it has been theoretically
predicted that Brewster's effect arises for TE waves under the condition that
the relative permeability r is not equal to unity. We have designed an array of
split-ring resonators as a metamaterial with mu_r 1 using a finite-difference
time-domain method. The reflection measurements were carried out in a 3-GHz
region and the disappearance of reflected waves at a particular incident angle
was confirmed.Comment: 4 pages, 5 figure
The Gaussian formula and spherical aberration of the static and moving curved mirrors from Fermat's principle
The Gaussian formula and spherical aberrations of the static and relativistic
curved mirrors are analyzed using the optical path length (OPL) and Fermat's
principle. The geometrical figures generated by the rotation of conic sections
about their symmetry axes are considered for the shapes of the mirrors. By
comparing the results in static and relativistic cases, it is shown that the
focal lengths and the spherical aberration relations of the relativistic
mirrors obey the Lorentz contraction. Further analysis of the spherical
aberrations for both static and relativistic cases have resulted in the
information about the limits for the paraxial approximation, as well as for the
minimum speed of the systems to reduce the spherical aberrations.Comment: 15 pages, 7 figures, uses iopart. Major revisions on the physical
interpretations of the results. Accepted for publication in J. Op
Recommended from our members
Solid Freeform Fabrication of Functional Silicon Nitride Ceramics by Laminated Object Manufacturing 1
The processing of silicon nitride (Si3N4) structural ceramics by Laminated Object
Manufacturing (LOM) using ceramic tape preforms was investigated. The key processing stages
involved green shape formation (which used the LOM process), followed by the burnout of all
organics, and final densification by pressureless sintering. Two material systems were
considered. These were a) monolithic Si3N4 and b) a preceramic polymer infiltrated Si3N4. The
raw materials for the process were tape preforms of Si3N4, which were fabricated by standard
tape casting techniques.
Mechanical property data obtained for the LOM processed Si3N4 showed high strength and
fracture toughness values. The room temperature and high temperature (1260 o
C) flexural
strengths were in the range of 700-900 MPa and 360-400 MPa, respectively. The fracture
toughness averaged from 5.5-7.5 MPa.m1/2. These strength and fracture toughness values are
comparable to those reported for conventionally prepared Si3N4 ceramics. Thus, this research
demonstrated that the LOM technique is a viable method for preparing functional Si3N4 ceramics
with good physical and mechanical properties.Mechanical Engineerin
- …
