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COMPUTING AERODYNAMIC SOUND USING
ADVANCED STATISTICAL TURBULENCE THEORIES

Arthur M. Hecht, Milton E. Teske and Alan J. Bilanin

Continuum Dynamics, Inc.
Princeton, New Jersey 08540

SUMMARY

The Lighthill theory of aerodynamic sound requires a knowledge
of the spatial and temporal variation of the two-point, two-time
turbulent velocity correlations. The feasibility of determining
these correlations based on extending closure models for one-point,
one-time turbulence correlations is demonstrated. The procedure is
based on a spatial moment integral formulation of the governing equa-
tions using approximate, parameterized trial functions for the two-
point, two-time velocity correlations. Solution of the equations
results in a set of anisotropic length scales and the separation-time-
dependent decorrelation of the ensemble averaged turbulent velocities.
The analysis was simplified using the assumption of homogeneous sta-
tionary turbulence and a constant shear, unidirectional mean flow.

It is shown that the anisotropic behavior of measured turbulence
correlations can be characterized by this technique. Using the
Proudman formulation of the Lighthill integral and the assumption of
normal joint probability, measured sound power directivity can be re-
produced for the compact acoustic limit by assigning a specific sep-
aration-time behavior to a decorrelation function (which becomes the
viscous dissipation in the limit of zero separation).

It is concluded that the present approach is a viable technique
for the prediction of turbulence generated aerodynamic noise. It is
recommended that further effort should be concentrated on extending
the theory to noncompact sound generation, developing a theory for
the behavior of the decorrelation function, and to investigate more
fully the effect of the anisotropic scales on sound generation.
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1. INTRODUCTION

The theory of aerodynamic sound generation by turbulent flows,
under certain simplifying assumptions, is based upon the avail-
ability, either experimentally or theoretically, of two-point, two-
time Eulerian velocity correlations. Theoretical analyses of the
sound generation problem have generally adopted an isotropic form
for these correlations.

In addition to the form of the spatial and temporal variation
of the velocity correlations, accurate predictions of sound genera-
tion are dependent upon an ability to specify the one-point, one-
time limit. The success of modeling efforts to close the turbulent
rate equations for velocity correlations at second-order has pro-
vided the means to predict these one-point, one-time correlations
with greater confidence than previously. Bilanin and Hirsh' have
used such a model to predict the sound radiated from a turbulent
swirling jet. Since only the one-point, one-time behavior of the
velocity correlations could be predicted by their method, it was
still necessary to adopt an assumed form for the characteristics of
the velocity correlations in separation space and time. For this.
the Ribner? formulation was used.

The feasibility of developing a more general representation of
the two-point, two-time turbulent velocity correlations is explored
in this study. If a Gaussian joint probability density function is
assumed, the turbulence statistics required to predict aerodynamic
sound are the two-point, two-time turbulent velocity correlation
Qis (%,2,t,7) where X and t are absolute space and time and
and t are the separation in space and time. Q.. (%,%,t,7) is de-
fined by +J

> _ > T > =
Q5 (x%,%,t,1) ug (0w & + 6t + 1)

where the bar denotes ensemble time average. If the turbulence is
assumed to be homogeneous and stationary, the velocity correlation
functions are dependent only upon separation space and time.

The equations governing Qij(§,€,t,r) contain higher order cor-
relations in two-point, two-time” triple velocity correlations, as
well as correlations between turbulent pressure and velocity fluctu-
ations. The closure problem is again the fundamental obstacle to
the solution of the equations, as it is in the determination of
single-point, single-time turbulent correlations. In recent years,
however, methods of modeling the higher order terms in the one-point,
one-time problem have been developed, resulting in significant im-
provement in zero separation turbulent predictions compared to pre-
vious mixing length models, as pointed out above. Successful
application of these modeling techniques to the zero separation
problem suggests that they may be extended to encompass two-point
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correlations in space and possibly in time.

Such an application presents numerous difficulties. The addi-
tional variable in relative time-separation as well as relative
spatial separation increase the difficulties in the solution to the
governing equations many fold. Even this is no fundamental barrier
to obtaining solutions, however. Higher order closure is again the
basic problem, compounded by the additional spatial and temporal
independent variables.

In this study a new approach to the two-point, two-time turbu-
lence problem has been attempted. Certain simplifying assumptions
have been made to reduce the complexity of the problem for this ini-
tial study since testing the feasibility of the approach is the
first priority. Therefore the turbulence is assumed to be homogene-
ous and stationary everywhere; conditions which later can be relaxed
fairly simply in the absolute space variables under certain condi-
tions. The governing differential equations are simplified by as--
suming a constant unidirectional mean shear flow. The complexity of
the equations is finally reduced to manageable proportions by employ-
ing an integral technique. Approximate forms of the velocity cor-
relations are chosen which are capable of reproducing the main :
features of experimentally observed correlations, each containing a
set of separation-time-dependent parameters which are essentially the
anisotropic scaling factors. These approximate forms are substituted
into the governing momentum equations and a family of moments in
powers of the separation coordinates is taken over all space. The
result is a set of simultaneous separation-time-dependent ordinary
differential equations which may be solved for the time variation of
the scale parameters. A set of subsidiary equations or constraints
are employed which are derived from an integral form of the contin-
uity equations.

Once the scale parameters, as well as their time dependence, are
found, enough information is available to determine the aerodynamic
sound associated with this type of turbulent flow. Since the source
term for the sound power is proportiondl to the fourth derivative of
separation time, a method must be devised to determine the fourth
derivatives of the scale parameters. In this initial study we exam-
ine the compact limit of sound generation and the theory will be
applied at zero separation time. Thus, we avoid the necessity of |
integrating the governing differential equations and instead expand
the parameters in powers of Tt , the separation time, and determine
the coefficients of these expansions for small 7t .

Although a number of simplifications have been introduced into
the analysis during this initial study, they may be removed with
varying amounts of difficulty once the feasibility of the technique
is demonstrated. Adoption of a working hypothesis that under special
circumstances the turbulent behavior of a flow can be inferred from
the analysis of simpler flows reduces this difficulty substantially.



For instance, if the characteristic size of the biggest eddies is
smaller than the characteristic length of the flow over which the
mean and turbulent variables may be considered homogeneous suggests
that we may assume the flow to be homogeneous locally. Even if this
condition is not precisely met, the homogeneous solution may serve
as the first approximation to the actual solution. This point of
view is adopted in this analysis. Thus, for instance, we shall as-
sume that the velocity gradient is constant, and the solution for a
varying gradient is obtained by a local application of the present
analysis.

This report is organized as follows:

Section 2 is a synoptic of the approach taken.

In Section 3 the equation defining the sound power inten-
sity is introduced.

In Section 4 the equations governing the two-point, two-
time velocity correlations are derived.

In Section 5 the models to be used for the pressure-velo-
city triple-velocity, and dissipation terms are developed.

Section 6 summarizes the one-point, one-time turbulence
closure model used to determine the zero-separation
velocity correlations which are the limit for the two-
point correlations.

In 7 the correlation function required to represent the
approximate spatial and temporal variations of Qjj is
selected. This is introduced into the governing equations
in Section 8 and the appropriate equations are obtained.

In 9 a qualitative comparison between theoretical results
and experimental data is presented.

In Section 10 the model is incorporated into the sound
power integral and theoretical results calculated for an
annular shear layer are compared with acoustic intensity
data taken with an axisymmetric jet in Section 11.

In Section 12, conclusions and recommendations are offered.

NOMENCLATURE

A proportionality constant relating turbulent intensity -
to integral scale and shear, Eq. (6.7)

..,B.. directional factors in azimuthal (¢) and latitudinal
137 1JP9  (y) direction for sound power, Tables 5a and 5b

A..,B.. directional factors averaged in ¢-direction in axisymmetric
)7 1IPY  flow, Tables 6a and 6b



a ' low Reynolds number constant in isotropic microscale
equation, Eq. (5.6)

b dissipation factor at high Reynolds number at zero
separation; decorrelation parameter averaged over space
for two-point, two-time viscous effects

Ci?k) integral moments defined by Eq. (8.7)

Cx scale factor in kth direction

Cy ambient speed of sound

Di?k) integral moments defined by Eq. (8.8)

GZ’G4 series expansion functions defined by Eq. (9.13)

gij(r) memory function for 1ij correlation

Ii?k) integral moments defined by Eq. (8.6)

L(v) total sound power intensity for axisymmetric flow per
unit area in ¢ direction at observer distance X

L. reference length

N VC/A

P mean pressure

P fluctuating pressure

Pij pressure-velocity correlationms, definéd by Eq. (4.19)

P(¢,¢,§) sound power intensity per unit volume

P(w,§) ¢ average of sound power intensity per unit of volume

Phy)  eoxPLP(v,0,y)/ (P US) |

q turbulent intensity

Qij two-point, two-time turbulent velocity correlation

Rij defined by Eq. (8.4)

T vectorial distance from origin of separation coordinates

Ry axisymmetric jet radigs to middle of annular shear layer

Sij triple-velocity correlations, defined by Eq. (4.20)
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%(Xk + x&) , absolute space coordinate
quadrupole strength density, Eq. (3.2)

absolute time

mean velocity in kth direction

mean velocity in xq direction at £k =0
fluctuating velocity in kth direction

one-point, one-time turbulent velocity correlation
(uiuj )o/q2

integration volume

triple-velocity correlation modeling constant
mean plus fluctuating velocity in kth direction
total velocity in direction of X

defined by Eq. (10.7)

defined by Eq. (10.13f) and Eq. (10.13g)

absolute coordinate in kth direction

correlation function separation time dependent
scale parameters

2 2 2 2 2 2 2

%35%15 €1+ Pi3%9:i5 %2 0 Y13%135¢3 0 M13%3 €12

Kronecker delta

shear layer thickness
dissipation of ij correlation
defined by Eq. (4.5)

defined by Eq. (10.11)
(10.13¢c), Eq. (10.13e)

defined by Eq. (10.13d) and Eq.



Superscripts:

)
()
()"
@)

Subscripts:

()
()
)y

isotropic form of integral length scale

anisotropic integrﬁl length scale of ij
correlation in kt® direction

turbulent microscale

viscosity

kinematic viscosity

separation coordinate; (%) - x&)
moment function defined by Eq. (8.5)
density, ambient density

decay length scale of 1ij correlation
viscous compressive stress tensor
separation time

angular spherical coordinates

vector quantity
quantity at x' and t'
quantity at x" and t"

ensemble average

reference quantity
index of coefficients in Taylor series expansion

value in kth direction



2. SYNOPTIC OF THEORY

The length and complexity of the theoretical turbulence and
acoustic developments contained in the following pages make it de-
sirable to summarize the approach more fully at this point. Lacking
this, there is some danger that the objectives of the present study,
and its important lines of approach, might be lost in the details of
the analysis. '

2.1. Sound Intensity

The Lighthill theory of aerodynamic sound®'* requires a know-
ledge of the spatial and temporal variation of the two-point, o-
time turbulent ensemble averaged velocity correlations Qij(i, yt,T)
The sound intensity generated by the velocity fluctuation and radi-
ated in the spherical coordinate direction (¢ , ¢), at distance x
from the source, is

p dx 3 2.2
I(y,4) =—°—ff[—[f 2 v a2 (2.1)
16ﬂ2C2 x2 T xx : _

vx(§,t) and vé(i + E,t + T) are the velocity components . at (§,t)

and (x + £,t + T) in the direction of the radiated power and con-
tain the mean plus fluctuating turbulent velocities. The assumption
of a normal joint probability distribution permits expressing

vivéz in terms of Qik , Qijqu and Qtip" plus other noncontri-
buting terms. Obtaining Qi' is the objective of the turbulence
analysis. J

2.2. Governing Equations for Qij
Developing the governing equations for Qj: yields a set of
differential equations having higher order corielations ujujuix and
nressure velocity cross-correlations, u;p’ Equations tor the
third-order terms contain terms in fourtﬁ—order velocity correlations.
This is the so-called closure problem where equations for any order
include correlations one order higher. An infinite hierarchy of
equations result, each level of which does not contain sufficient
‘information to obtain a solution. :

This problem is avoided by modeling .the third-order and pressure-
velocity correlations in terms of second-order correlations. Exten-
sion of an established second-order closure technique is used for
this, yielding a consistent set of (solvable) equations for Qij
The equations governing the two-point, two-time correlations,

Qij , which are derived in this study, are



3Q..  93Q,. 3U, 3! 3Q. .
ij ij i 141 1] —id
+ tQeoox, t Uk oaxg 2% T U] T

at 9T k
U, ;%él --1.2 [u,ulu’ + u.,u ull
+ [0 - k] 2 05y i Juk i%k 3
) 1 0 —= 0 ;
- 3T [uluﬁuk ulukuj] 70 [3;; uj + 555 u;p ]
1 [ 3 s 1.1 27 o2
'—[WW'WU'P]+7v-—zﬁ+2v_fl (2.2)
P j i J cE 3E;
where
gk = x& - Xy (2.3a)
S = [xk + xk] (2.3b)
T=t' -t (2.3¢)

Assuming that the turbulence is homogeneous and steady eliminates
derivatives in sk and t and assumption of a constant, unidirec-
tional mean velocity gradient in the X, direction

du
1] (2.4)

U, =9 U, + ¢
k 1k [ 1o 2 dx2

affords considerable simplification. The following turbulent models
are then introduced. For the triple-velocity correlations

) — L 2 .
52; [uiujuk - uiuku.] = -V.qAV Qij (2.5)

J

The pressure velocity correlatlons are modeled- as Rotta tendencyv
towards-isotropy terms
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173 - grsl=4 .1
b |7E; “iP T EEg ujp} 1 [Qij §5ijQ22] (2.6)
The dissipation model (high Reynolds number limit) is

2vV2Qij = -2 § (2.7)

Here A 1is a global macroscale set by the local flow and q2 = u,u,
The equations then take the form

3Q. . 3Q. du
_ij 1 i - . 1
5t T (Ulo t &) 3% ) 3E, <}ilQ2j + 5j1Qiz> Ix,

_ g 21 ] _ 2bg |
i [Qij 36ijQ2£J + chAV Q.. n Q.. (2.8)

b and v,. are modeling constants. The form of the modeled_terms
are adapted from Donaldson's second-order closure technique.®

2.3. One-Point, One-Time Correlations

The limit of Qi35 for and T equal to zero are the one-
point,one-time velOC1%y correlatlons The equations governing

Ql (0,0) may be solved to determine the one-point,one-time values
N ujus in a constant shear flow. The results are

ulul/q2 = %—[1 + 4b] (2.9a)
u,u
uzuz/qz _ ‘§7§ - %[1 - 2b] (2.9b)
q
—_— 2 1 '
uluzlq = 3% [1 - 2b] (2.9¢)
%
A=[L%§&] (2.9d)

where A = q/(AdUlldxz)
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The one-point, one-time solution used in this study is for con-
venience only. The one-point, one-time correlation can .be obtained

from any turbulence model, or from numerical solutions of shear flow
turbulence.

2.4. Two-Point, Two-Time Correlation Functions

This study employs an integral approach to determine the behavior
of Q-j(ik,T) . An analytical form is selected for Qi3 which is
capabie of approximating the two-point, two-time behavior of velocity
correlations seen in available experimental data. This form contains
a set of separation-time-dependent free parameters which are deter-
mined using the governing differential equations together with an

integral approach. Here, we have chosen the following form to approx-
imate Qij

Qij = uinijgij(T)
_ 2 2
2 2
g g
vexp -[L-{L (e - 2422423 (2.10)
S 212 %1 2 T 32
ij 1 2 3

where ujus  is the zero separation, one-point, one-time result.

Rjj contalns the parameters <oj: , Bij , Y43 » Mij », 0ij » €1 , €2
an& cqy which are separation ti 2z dependent.” ajj , Bij , vij and
uj5 serve to provide zero crossings of the correlations, the ani-
so%ropic analog of the isotropic velocity correlation function g(r)
zero crossing. The asymmetry in the £9 direction due to shear is
accounted for by the presence of ujij . c¢j , cg and c3 are an- -
isotropic scaling functions to provide variations in spread in the
three coordinate directions. g7 is a memory function which
decorrelates Qjj at Ex =0 Ih a coordinate system following the.
flow at velocity Ulo . In order to evaluate the anisotropic be-
havior of the turbulent scales, we define

(k) (y = X _ -
18 () = gij(r)JfRij(gk - 83U DA - 83U T, k= 1,2,3
(o]

o o
(2.11)
which becomes a function of the correlation function parameters.

11



2.5. Continuity

The continuity equatioms governing Qij(Ek,T) are

3Q. .
g = 0 (2.12)
j

These equations serve to add constraints on the parameters and pro-
vide continuity in an integral sense as will be demonstrated shortly.

2.6. Integral Moments

The correlation functions are substituted into the governing
equations and a set of integral moments of the equations are taken
over all space. The moment function

o 0 oo

(my) _
Iijk -J[‘]:jﬁ(mk)qij dg dg,dE, (2.13)

-0 = 00 = OO0

is defined where w(mk) is a function of the £ coordinates

I (my ,m,,my) = £71£52£33 (2.14)

A sufficient number of moments are taken to provide enough equations,
together with the continuity constraints, to allow solution of the
set for all the unknown free parameters. The governing equations
become total differential equations in Tt in the separation time
dependent parameters. Since experimental data indicates that
3Q;3/3t = 0 at zero separation time, the initial conditions are
found by an algebraic solution of the equation set for the parameters,
with zero rate of change at T = 0 . The characteristic length of
the flow is specified by independent selection of one scale of the
set AGE)
1]

Continuity is satisfied in an integral sense by integrating
the continuity equation over half the separation space domain as
follows |

o ©

© Q.. :
de¢_ [dg [ ==L dg_ =0 , pqr = 123,231,312 (2.15)
12 q &4 r _

ake ]
-0

12



2.7. Decorrelation Function b(t)

Decorrelation of Qjj with separation time is provided for in
this study by a separation- time dependence of the turbulent dlSSlpa-
tion function b(t) . At zero separation in space and time, b is
a modeling constant. The one-point, one-time value of b =1/8 is
probably no longer adequate when considering a space integrated dis-
sipation of Qjj5 . Instead a time varying form b(t) is hypothe-
sized. b(0) and the time dependence is selected to provide
agreement between the theoretically calculated sound generation and
measured sound intensity data.

2.8. Solution of Time Dependent Equations

The resulting equation set may be solved numerically.
However, for this first effort the compact acoustic limit
is assumed. This permits expansion of the parameters in power series
in T about T =0 . The zero-order solution is the initial con-
dition now known. Higher-order coefficients are found by substitu-
tion of the expansions in the differential equations and ordering of
terms. The result is a set of algebraic equations for coefficients
of order n + 1 in terms of coefficients of order n . The decor-
relation function b(t) 1is specified by selection of b(0) and the
higher order coefficients to provide agreement between measured and
calculated sound intensity distributions.

2.9. Calculation of Sound Intensity

Having the behavior of Qij for the selected shear flow con-

%viz (uiuj ,

sidered, the results can be used to evaluate v
'dUl
325 ,» X1 » ¥2 , X3 , ¥ , ¢) and the fourth-derivative is then taken

with respect to T . Then T 1is set equal to zero and the integra-
tion taken over separation space. Since Q; ij is an explicit func-
tion of £ this is done analytically. We “thus have the compact
limit of the locally radiated sound intensity, which is a function

of the local gradient dU;/dx) and the one-point turbulence corre-
lations wujus A final numerical integration over a specified mean
velocity pro%lle and turbulence distribution provides the sound inten-
sity radiated in the (¥,¢) direction.

This has been a very brief overview of the theoretical approach.
The analysis is presented in considerably more depth in Sections 3
to 11.

13



3.0 ACOUSTIC SOURCE TERM MODEL

The sound pressure radiated to a point x in the far field in
a localized unsteady or turbulent flow was shown by Lighthill to be
given by

X.X. 9" T..
p(X,t) = 1233[[ Ej]cﬁ (3.1)
4Te”x ot
(o) oo
Tij is a quadrupole strength density
T.. = pv,v, + 1,. + (P - czo) S.. (3.2)
ij i3 ij o ij )

where PViVy is the unsteady momentum flux, vj the velocity, ..
the viscoUs™ compressive stress tensor, P the local pressure, c013
the ambient speed of sound, p the density, and &4:; the Kronecker
delta. Equation (3.2) is normally dominated by the ﬂnsteady momentum
flux pvivy . The symbol [ ] in Eq. (3.1) denotes retarded time.

The indices i, j and k are equal to 1, 2 or 3 and repeated indices
are summed. Figure 1 presents a schematic diagram of the coordinates
employed here.

The sound power generated by the velocity fluctuations and radi-
ated in the directions (¥,¢) in spherical coordinates is the ensemble
averaged pressure fluctuations at the point of observation divided
by poco . Defining this by TI(y,¢)

XkX 3 ( 'V'V ) 3 (p”vkvl) > >
I(y,9) = —= f s dy'dy" (3.3)
l6m Py c at

. 0 ] +| ]
where the first term of the integrand is evaluated at y',t and
the second at y'",t" and the bar denotes an ensemble average.

t' - t" is the difference in time of travel to x from y' and,

y" . Ribner® expressed Eq. (3.3) as a function of the midpoint y

and the separation in space and time using
v =33 + 3 (3.4a)
=5 -3 (3.4b)
T=t -t (3.4c)

14
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Figure 1. Coordinates of acoustic analysis
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and the assumption that the observer distance x is large compared
to the flow dimensions, i.e.,

> >
c T 2 Eex/x (3.5)
giving
I(y,0) =$[f(w,¢,§) d; (3.6)
where
P X.X.%. X 4
+ k™1 [ _—— >
P(y,d,y) = o t.] Jf v.v.viv, d&  (3.7)
16TT2ch6 J 3T4 ivj'k"1

Proudman’ expressed Eq. (3.7) in the very convenient form

L o—
9 . vivéz at (3.8)

9T

p
P(lp’¢9_§) = ’O [
16172 x%>

co

where vy, and vy are the components of the velocity fluctuation at

y' and v" in the direction of X .
The correlation v%vgz can be expressed in terms of the quad-
rupole correlations viv-vkvi and the coordinates x,¥,$ . Assump-

tion of a normal joint probability distribution for u; and ug
permits expressing the fourth-order correlation in the terms of
Q.. and Q . This will be done in Section 10.
ij kl
4. DEVELOPMENT OF TWO-POINT, TWO-TIME,
TURBULENT CORRELATION EQUATIONS

Here we develop the equations governing the ensemble averaged
twn-point, two-time correlations of turbulent velocity components
that are required to predict aerodynamic sound. As we shall see the
equations for the two-point, space-time velocity correlations con-
tain triple-velocity and pressure-velocity correlations which cannot
be solved for exactly without recourse to an infinite hierarchy of
equations, each containing successively higher-order correlationms.
This is the so-called closure problem. It will, therefore, be neces-
sary to model these terms in a way which will meet certain criteria.
Now, in the limit of zero separation in space and time the exact

equations governing the correlations reduce to the equations des-
cribing the Reynolds stresses at a point. We shall model the two-
point, two-time equations such that at zero separation and time they
reduce to an established theory of higher-order closure for the

16



Reynolds stresses. Such closure theories have been developed by
Donaldson®, Hanjalic and Launder®, Wolfshtein, Naot and Lin’ and
Lumley and Khajeh-Nouri'?, among others. Closure theories generally
specify numerical values of coefficients in their modeled terms
chosen to optimize agreement between theory and experimental data.
It is considered undesirable to require changes in these coefficients
for various flow conditions. The coefficients in our modeled terms,
which as we shall see are the viscous, pressure-velocity and triple-
velocity correlations, will be assigned those values selected by
Donaldson and his associates and employed in their technique of in-
variant modeling.®’*' (Henceforth this technique will be referred
to as (I) for convenience.)

4.1. One-Point, One-Time Equations

The equations governing the conservation of momentum and mass
in an incompressible uniform density fluid with constant viscosity
are : :

2

BUi SUi 1 ap 0 Ui '
et b U, = = - = e by T (4.1)
ot 3 axj P axi ‘Bxﬁ
BUi
-5;:’0 (4.2)
1

The velocity Uj is now written as the sum of mean and fluctuating
components, Uj + uj , introduced into the governing equations, and
an ensemble average is taken. The results are

20, 2V, MW 1 4p 2%, _
5t T U5 9%, 0T Thx. o ax, T VT2 (4.3)
J J i axj
20,
=0 - (4.4)
1

These are the equations governing conservation of the mean mass and
momentum at one-point and one-time. The equations for the Reynolds
stress are developed from Eq. (4.1) and Eq. (4.2) by introducing the
mean and fluctuating components for the velocities wuj and uj and
before ensemble averaging, multiplying the respective equations by

u. and u. . Addition of the equations, subtracting out the mean
u&ing Eq. t4.3) and Eq. (4.4) and averaging lead to the equationms

for the ensemble averaged Reynolds stresses ujuj at a point .

17



_ i3 N S R B i
5c T Uk Tox i% 3%~ Y5V %
k k k
_ 9 (G u ) - Ei ap (4.5)
9%y Uiy T o ok, .
J
2
U 3 9 u.u. ou. Ju
_1er 4y 11 9y L __1
p  9X 2 9X, 0OX
i axk k k

These equations are the counterparts of the equations governing
the evolution of the two-point, two-time velocity correlations, which
will now be derived in more detail. Initially we do not assume homo-
geneous turbulence, but for simplicity this assumption will be made
later, as well as that of a constant gradient mean flow along one of
the coordinate axes.

4.2. Two-Point, Two-Time Equations

Now define the mean and instantaneous turbulent fluctuating veloc-
ities at point xk and time t as Ui' and uj,, and their counter-
parts at point X and time t' as U${ and us; , introduce them in-
to Eq. (4.1) and subtract out the mean equations. This leaves

Bui aui an aui 3
5t Uy 9Ky + 9%y +ouy 9%y - EEON bl A
2
2 u.,
= - % Pty (4.6)
i Bxk
ou! ou! U! dul 5
] ' | v ] 1 L _ T1q 9
st T Uk axy T Uk axy t U ax T g (uguy)
2
1 Bu! ) .
-t gy 4.7)
P 3j Bxi

Now multiply Eq. (4.6) by u}{ and Eq. (4.7) by uj . Since primed
~dependent variables are not tunctions of unprimed independent vari-
ables, and vice versa, they pass through the partial derivatives.

18



Adding the two equations and taking the ensemble average gives

auiu% aﬁzﬁq aﬁiu. Buiu! BUl
] 1 T 1
se - v eer Uk o, T Uk Taxp T Y%k ax,

! —— POt
aU. auiukfi, ou.u.u

T 1 ijk
S T T T (4.8)
azu.ui azu.ul
S S L S S vy s PR —iis i3
P oX; ] P axj * 9Xy axé '

New independent variables are now introduced to differentiate

between the effects of absolute position and time and separation
distance and time. Define

-

e T ¥ T Xy (4.
S, = l[x + %] (4
k 2% Y Tk _ y
T=1t' -t (4
The derivatives become
5 ISk 4 9k 3 1 3 5

= + —— = e T = = (4
axk axk ask axk agk 2 ask agk

_ 9% 5 ek 3

) 1 35
T 1 + 1 =5 + - (4.
2% _ % 22, 2° 2~ 4
2 2 2 981,08 :
8%y sy 9 k%°%k
2 - % 32 + 2 + o2 (4
' 2 2 98, 9& )
CEW 98y A&y k™ "k

9a)

9b)

.9¢)

.10a)

10b)
10c)l

10d)
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-———na —_— ee—— —— =
oL’ t" 37 T 3¢’ a3t st T 3t (4.10e)
Taking the ensemble avprage we arrive at
Buiuj Buiu% BUi ouU!
1 —_— L,
1 du ul a'ﬁ’i'ﬁ'_
— ! - 1
+ g O + Ul —5g— + U - Gl —5%
k k
- .1 2 fu.uly' +u ull] - 2 [u.uly] - u ul]
2 Bsk ijk 1% j ) k & Juk 1%k 3j
1 3 d
1 [83 w=. 3 w=rl - %|3e7 wiP - 587 4P
"7 [asl WPt gy YsP } 1oty L oty J}
2 2
+ i T+ v & wat (4.11)
2 5 2 2 "i7]
S1c ng

4.3, Simplifying Assumptions

We now invoke the assumption of homogeneous and stationary tur-
bulence, and all derivatives with respect to the absolute coordinates
sy and absolute time t vanish. Defining Q;3(81,82,83, 5 T) as

ui(xl,xz,x3,t)uj(x1 + €1 » Xg + €2 » Xg + €3 ; £+ T)

we obtain

aQ aU. au! 2Q

i.l __L ___1_ - 1 i.l
st T Yk Tx, +Qy v+ (U™ Uyl

- - 9 ET
agk [uiujuk uiukuj
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Figure 2 summarizes the coordinates systems in absolute and
separation coordinates.

One of our basic working hypotheses is that the behavior of more
complex flows may be inferred from the analysis of simpler flows,
specifically here that locally the turbulent correlations can be cal-
culated from knowledge of the local velocity gradlent. This gradient
is taken to be_constant over the volume of separation coordinates
within which ujuj becomes completely uncorrelated. The convective
velocity in Eq. 2 12) is assumed to be along the &7 coordinate '
with a constant gradlent in the £9 direction. Then

dU1
o 2
du,y
Uy = Uy = S1k&9 Ei; (4.14)
so Eq. (4.12) becomes
3Q. . du du, 9Q..
—ii 1 L _7ij
ot t Gl * 851%0) &, * %2 &, I
o5 ] 1[5 o= . 3 ==
= - 5% e [u ulul uk uluku atl + [ 3, agj uip].
52
+ 2v —5 Q (4.15)
ng
This equation describes with respect to a coordinate system
£k convected with the local ve10c1ty within the shearing flow. If

we wish to write the equations for a flow moving at a velocity U1 ,
with respect to the coordinate system, then we have

P i dU1 dU1 BQl
—5rr + (857Qp5 + 851Q49) I, * <U10 &y —"x2>'a_g“‘1l
= - __3_ T ' _ o ' _]_-_ - 3 1V - d P B
= 35k [ulu Uy ulukuJ] TS [5E; ujp 52; u.p ]
82
+ 2v 5 Qij (4.16)
BE,-K
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Figure 2.

Absolute and separation coordinates for two-point,
two-time turbulent velocity correlations



Now, for homogeneous turbulence in the coordinate system adopted
and since the turbulence is stationary, the correlations will not be

changed if we replace & by -€

dition of invariance undér u$m31a§ion,

field¥
T (61,69,85T)
Tl (8y585,853T)
T UL (B),89,835T) =

pu.

3 (51352’53;T)

= u,
J

= U.iukuj (-gl)-£23-53;-r)

= p'

and T by -t From the con-

for any homogeneous flow

u.
1

(—gls'€21'53;'T)

(-El’_EZ’-EB;-T)

u.

3 ('519'523-63;-T)

From the condition of invariance under reflection for this co-

ordinate system
T u .
u.u; (€1,89:8457)

uiuiuj (51,52,53;T) = -

uiukuj (gl’EZ’g3;T) = =

Puﬁ (51’€2,€3;T) = -

— 31 111 . -
= uiuj (-glp-€2’—€3! T)

iuiuj (‘glx'gzy‘gs;‘T)

uiukuj (-El’-€2’-€3;-T)

pu:

3 (‘51,-529"53;’1)

The triple-velocity correlations are symmetric with respect to the
indices referring to the same point so that

uiukuj

— T =
uiuku.j

— - —— ———————————

*The following symmetry arguments
p. 332.

ukuiuj

———

uiujuk

. . 12
can be found for T 0 in Hinze,
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The term in Eq. (4.17) containing the triple-velocity correla-

tion term gives

d [u; u! uk - uiukuj] Ek 0 = 0
k T 0

From continuity, contraction of the pressure-velocity correla-

tion term gives

3 . -
3t UiP - ag uip =0

Contraction of Ea. (4.16) then yields

3Q. . du Q5
il 1 1
5 t Qg t (?10 &) 3% > agl

2
2
9°Q..
____3_ T _ T 11l
= 35k [uiui uiukui] + 2v agﬁ

Now at zero separation BzQii/3£2 can be written .

32 52 ' ou, oul
55| =- o wul = - kL
agﬁ ii . Bxkaxk i7i Xy Bxk

so that for § = 0,7 = 0, Eq. (4.17) reduces to

Bﬁiui du, du uy 35;_552
3T 172 dx2 1o 851 Bxk Bxk
Since u u (& ; T) = uu (=g 5 -T)
du du, ou.
i ) H_l ==V 3—_'§;L
%2 Xy 9%

at gk =0, 1t=0.

To facilitate writing equations let

. _ 9
Fij = [aaj UiP' " FE] ‘?ip]
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= _a__ . L] 1
Sij = agk [aiujuk - uiukuj] (4.20)

Written out in full Egs. (4.16) now appear as

-8—2—1-1- +<U1 + &, E_i_l);g_ll_ = - 2Q12 g{l - S11 - %Pll + 2\)V2Q11 (4.21a)
0 2 1 2

.3332 +<Ulo v, %)2_2_12_2 _ - S,y - Lo, + 20770, (4.21b)

8233 +<?10 + £, E;%) ;%%é = - 834 - %P33 + 2vV2Q33 (4.21c)

E§%2»+<?10 + gz §;§>-;§%g = - Q22 g;% - 812 - %Plz + 2\)V2Q12 k4.21d)

Although equations may be written for the Q;3 and Qg3 correla-
tions (which are equal to zero at zero separation), they may be found
from continuity, given the remaining correlations. We shall neglect
Q13 and Q23 in this initial study for simplicity, concentrating
only on the correlations which are explicitly required to compute the
energy components Qi3 , Q22 and Q33 .

Although it is not possible to define precisely the character-
istic physical behavior of each term in the governing equations for
the two-point, two-time velocity correlations, they may be identified
by analogy with the one-point, one-time equations as follows. Write
the equations as

%Q; . < : du, \ 2Q;. . du,
Al (U + 8, == ) == = - (6,4Q, + 8.4Q0) T
T 1, 2 dx, / 5gq < 11?23 31Q12 49X2
I
1l 3 g5 - -2 arp| - =2 Ior - '
" b [agj LT ujp] SEg 1M T Vit
2 I1 ’ III
* v 7 Qy
3k (4.22),
[ Nk,

JAY
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I is a production- like term, where interaction with the mean
flow generates a net increase in the wujuj and u1u2 correlations.
II, the pressure-velocity correlations, disappear upon contraction.
This term transfers correlations between components. In one-point,
one-time theory it is the '"tendency-towards-isotropy'" term. Since
production of energy-containing eddies occurs in the i=j=1 equa-
tion, this term transfers energy to the 22 and 33 components which"-
in turn may exdxnge energy among themselves and the 12 correlations..
Deissler'® and Fox'' have studied this transfer for low Reynolds
number turbulence. A summary of their results appears in Hinze*

III is the triple-velocity correlation and is a diffusion-like
transfer of Qj. Dby turbulence gradients. Flnally, IV is a dif-
fusion-1like ter& which serves to decorrelate through the action
of viscous stresses. At zero separation it redu%es to the dissipation,

au Ju,
-2v§§— 5;1 ,» and the triple-velocity correlation term is zero. Thus,

the contrdcted form of the equation, for which the pressure-velocity
terms sum to zero, shows that the dissipation must be balanced by the
production for stationary turbulence.

5. MODELING OF PRESSURE-VELOCITY, TRIPLE-VELOCITY
AND DISSIPATION CORRELATIONS AT SECOND-ORDER

In this initial study, intended to test the overall validity of
our approach,it is desirable to provide closure of the governing
equations using the simplest possible model consistent with physical
principles. The philosophy here is to extend the form of one-point,
one-time modeling to the two-point, two- t1me correlations such that
the latter reduce to the former for Ex = , T =0.

5.1. Modeling of Triple-Velocity Correlations

The triple-velocity correlations at zero separation in space
and time have usually been modeled as gradient diffusion terms in
previous closure techniques. The form adopted here and which has
been used in (I) is

3 3 auiu.
EERNRE A S ("’ch “‘—laxk ) (5.1)

where dz= uju; and A is a turbulent length scale. In anisotropic
turbulence we should expect that A 1is dependent upon direction.
Indeed, this would be the natural extention of Eq. (5.1) to a more
sophisticated model. Later, we shall define a set of directionally
dependent turbulent scales. In the present turbulent diffusion model
A will be assumed independent of direction, although we might expect
A to be dominated by the assumed unidirectional mean velocity gra-
dient in the Xy direction.
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Equation (5. .1) satisfies the tensor symmetry of the triple-
velocity derivatives B/axk(uluJuk) but not the symmetry of ujujuk .
The model coefficient v, was assigned the value of 0.3 in
(I). This mpdel is extended to a two-point, two-time modeling by
writing uluJ in place of the one-point, one-time correlation. Due
to homogeneity the turbulent diffusion coefficient v.qA is assumed
uniform in space and so

it

2
Sij - VAV Qij (5.2)

where
2 _ 3% a2 3t
2 2 2
3&1 8&2 853

5.2. Modeling of Pressure-Velocity Correlations

As noted previously, contraction of the governing equations re-
sults in elimination of the pressure-velocity correlations since
Pil = 0 in homogeneous turbulence. For one-point, one-time correla-
tions these terms redistribute energy between the velocity components,
tending to decrease anisotropy and decrease the turbulent shear
stress. According to Deissler and Fox, P;. may actually promote
anisotropy in two-point correlations under” some circumstances.

From the governing equations for i = j we see that the pro-
duction term appears only in the Qj7 equation. Pjj must therefore
increase Q22 and Q33 at the expense of Q11 ﬁotta15 modeled
the pressure-velocity correlations as a tendency-towards-isotropy
term for one-point, one-time calculations as

1,80 4 o2 |- cllgo - L5, .42
p[uiaxj + UiTxo ] CA[uiuj 3éijq (5.3)

where C 1is an order one constant. Taking C =1 , the form of
Eq. (5.3) is extended for the present analysis to

1 -4 21
orij A[Qij 3513'%&} - (5.8

which reduces to Rotta's form at zero separation. Note that Ql
could be transferrad unequally among components by writing Eq. g 4)
as

=4 -
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where we must set n;; =1 tomake P;j; = 0 . For simplicity in
this initial study we shall use Eq. (5.%).

5.3. Modeling of the Dissipation Term

2
Term IV of Eq. (4.22), +2v9 Qij/agﬁ , is a diffusion-like trans-
fer of correlations due to viscous effects. At one-point, and one-

1

time this terms becomes -2v§§§ gii , and under contraction of the

indices balances total production. For large Reynolds number the
magnitude of this dissipation forces a high rate of decorrelation in
Q;i near zero separation, and therefore the second derivatives of

Qij are large in this region. If we express Qij near zero separ-
ation as

£E.E.
L — i°i
Qij = (uiuj)o[l - Az + ----] (5.5)

where X 1is the turbulent microscale, then the dissipation is,pro—
portional to -(uiuj)o/x2 . As suggested by Rotta'’»!®, the micro-
scale is modeled as

2
A= D (5.6)

Vv

Therefore, in the high Reynolds number limit the dissipation term
will be

94Q. . ‘
1] _
2v———il = - Zb%Qij (5.7)

where (ujus;) has been generalized to Qi3 . The one-point, one-
time limif ®f the contracted form of this todel is -2bq3/A .
Donaldson in (I) has used the isotropic form of this model, (i.e.,
2/361.bq3/A) , with b = 0.125. For non-zero spatial separation we
might)expect a smaller value of b since the viscous decorrelation
occurs over a larger characteristic length than A . For increasing
separation in time it is reasonable to suppose that decorrelation
will increase. For this study we shall assume that b is some aver-
age value over separation space and a function of T . A prelimin-
ary value will be assigned at some point as well as coefficients in
the separation-time expansion. These values will be chosen to pro-
vide physically realizable behavior of the correlations and, to match
experimental acoustic measurements.
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5.4. Modeled Form of Equations

Equations (4.22) now take the form

3Q; . du; Q. ' du,
5Tt <Ulo t &y _dx2>§‘g‘1 = -<6i1 Qi +951%7 ) 3,

2
_ 4 _ 2 _ 2bgq
A [Qij 36ijQ22] +VvahvIQ s - T Qg (5.8)
Written out in full these are
3Q du. \ 8Q au
11 1\°U1 _ 1 q .
57 (Ul + &) 3%, >5E‘ Q19 3%~ 3% [2Q11 Q2 Qs]
o 2/°% 2
2 2bq -
3Q du. \ 3Q
22 1 22 _ _ 9 0 -
3t +(U1 t 8 ax >a£ 3% [Zsz U1 st]
o) 2 1
2 2b
+ v ahv’,, - 224 q,, (5.9b)
3Q du. « 5Q
33 _ 1\ _33 _ _ 9 _ -
st T U1 1 ax > 3E 3% [2Q33 Q1 sz]
o) 2 1
2 2bq |
0y, o b dup\ 3Q, A duy .
9T 1 2 dx & 22 dx A 12
0o 2 1
_ 2bg | '
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6. ONE-POINT,ONE-TIME TURBULENT VELOCITY
CORRELATIONS FOR STATIONARY, HOMOGENEOUS
SIMPLE SHEAR FLOW .

In applying the present theory to calculate turbulent acoustics
the values of q and A in Egs. (5.9) would be obtained from full
numerical solutions of the flow being studied. For convenience, and
to provide a consistent set of one-point, one-time velocity correla-
tions that will be required in order to evaluate the shear flow model
we are developing here, let us examine the limiting form of the
governing equations for (ujui) at & =0, v = 0 . These correla-
tions are the initial conditions for the two-point, two-time correla-
tions. Whatfollows is adapted from Donaldson's superequilibrium theory in (I).

Since the flow is homogeneous and stationary, derivatives of
(Uju3)o with respect to absolute space and time are zero. At the
limi% of zero separation in space and time, Eqs. (4.5) define the
one-point, one-time turbulent velocity correlations for this flow.

The left hand sides of the equations vanish. The viscous term tranc-
forms to a dissipation term at zero separation, dependent upon the
curvature in separation space, of the two-point velocity correlations
at zero separation. The equations at zero separation become

du

_ — 0 1_4g 21 2
0= - (Syquguy *+ 851u3¥9) g, ~ w (U4~ 30439
aui BuJ
ooy it 3 6.1)
axk axk

where the modeled form of the pressure-velocity correlations is used.

The contracted form of this equation yields

H

dU1 Ju, aui
U U, —— = = V =—= —= = ¢ (6.2)
172 dx axk axk

N

or production exactly balances dissipation, where e is the total
dissipation rate of the turbulent kinetic energy per unit mass,

1/2q2 . 1If we define the dissipation terms in general as
aui aui _ _
Eij =\)“a—}-{-12-${; (6.3)
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then the equations may be written

2¢ - %K [2u1u1 - Uy, - u3u3] - 2€11 =

- %K—[Zuzu2 - ulu1 - u3u3] - 2522 =

- %K [2ugug - uyuy - Uyu,] - 2644 =
du

L) HE% ) - 2815 =

and the contracted equations show, of course, that

€= €55 T €11 t gy F B33

Equations (6.4a), (6.4b) and (6.4c) are, therefore,
since any one can be derived from the other two.

Manipulation of Eqs. (6.4) yields the velocity
terms of the dissipation

27
+ ;—3' (822 + 833)

N
(W

YUz 1 2h
2 3 3 722

q q

Y393 1 2
—73- T3 " 73 €33

q q

dUy
“1“2=__diz_[;_zae ]_2
7 3" 73 €22
q 1 q

0. (6.4a)
0 (6.4b)
0 . - (6.4¢c)
0 (6.4d) |
(6.5)

not independent

correlations in

(6.6a)
(6.6b)
(6.6c)
A
3 €19 (6.6d)
q3 1 .

We can solve for €9 in terms of the other dissipation components.

First let us define
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A — - (6.7)
dx2
which for a constant value of A 1is a definition of A . The ratio

q/dU;/dx2) can be considered a characteristic length in a constant
shear turbulent flow. The inverse of A then defines the size of a
"typical" eddy in terms of this characteristic length.

€19 then becomes
e =1 QE (l A2 + ) A_ 1 6.8
12 A0 | GAET ey 36 (6.8)

In shear flow we would expect ¢€;s to be anisotropic. Past
investigation of shear flow have usuatiy assumed isotropic dissipa-
tion

1 3
=-3—6..b-(/1\-— (6.9)

€.
1] 1]

For simplicity we shall also use this assumption and Eqs. (6.6) give

u,u
121 - %_[1 + 4b] (6.10a)
q
u,u u,u
272 _ 33 _ 1 _ 9y (6.10b,c)
7 2 ~3
q q
u,u
12 _1 .4
pr sxl1 - 2b] (6.10d)

For e;, = 0 , Eq. (6.8) gives A 1in terms of b

%
_ |1 -2b
In (I), b was assigned a value of 0.125, and therefore
A = /2 . Table 1 presents a comparison between the results of experi-

mental investigations of nearly homogeneous, constant shear flow tur-
bulence by Champagne, Harris and Corrsin!’?, and Harris, Graham and
Corrsin®® and the nondimensional turbulent velocity correlations pre-
dicted by Egqs. (6.10) and Eq. (6.11) for b = 0.125.
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Table 1

Comparison Between Measured and Theoretical Turbulent
Velocity Correlations for Constant Mean Shear Flow

DATA THEORY
Turbulent
Velocity Champagne, Harris .
Correlation et al.t’ et al.'® (b =0.125)
Ta /q° 0.47 0.50 0.50
191/4 . . .
wu,/q? 0.25 0.20 0.25
24,79 . . .
Tuo/q 0.28 0.30 0.25 i
3Y5 . . .
2
u,/q -0.16 -0.15 -0.176

Agreement between theory and data is acceptable for our present
purposes. .

Having an approximation for the zero-separation limit we now can
go on to select the functional representation for the two-point,
two-time correlatiomns.

7. SELECTION OF TWO-POINT, SPACE TIME CORRELATION FUNCTION

One of the basic requirements of our analysis is that we can !
select a functional form for Qij(51,€2,€3;T) that is both versatile
enough to characterize the behavior of the two-point, two-time velo-
city correlations, yet be amenable to analysis. The trial function
that we select should be functionally explicit in separation space
(so that spatial integration can be accomplished analytically) and
contain a set of separation-time-dependent parameters. The form of
the selected function is based on examination of experimental measure-
ments of two-point, two-time velocity correlations, supplemented by
theoretical conditions which may be inferred from continuity, symmetry,
homogeneity and stationarity of the turbulence and the limiting form
of the correlations at zero and infinite separation in space and time.
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The method of solution then consists of forming a set of equa-
tions based on taking the (m,k)-fold spatial moments of the govern-
ing equations containing the selected trial function, where m
refers to the moments in the spatial coordinates and . k the direc-
tional dependence and then integrating in separation space to form
equations dependent only on 1t . The product m X k must be chosen
such that the number of equations formed, in conjunction with con-
ditions derived from supplementary constraints such as continuity,
are sufficient to calculate the total number of parameters contained
in the trial function.

Since in any specific turbulent flow the characteristic size of
the energy-containing eddies is set physically, such as by the largest
dimension of the flow, by the diameter of a jet, etc.,
we must leave one parameter of the analysis free to be specified. 1In
general, this should be one of the integral scales, and this is the
approach taken here.

7.1. Supplementary Constraints

The form of the two-point, two-time velocity correlation trial
function must conform to several conditions

1. Loss of correlation at large separation
in space and time

Qij(gk + o ; 1) >0 (7.1a)

Qij(gk 3 T > @) >0 (7.1b)
2. One-point, one-time limit

Qij(o 3 0) = (uiuj)o (7.2)

3. Incompressibility

0Q. . aQ

iy _ ij _ i
5T, agj 0 (7.3a,b)

4. Symmetry with respect to the §
unidirectional shear flow

3'Q. .
—EE%TI =0 . (n odd) (7.4)
3
=0

1 Ez plane for

£3
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5. Homogeneity and stationarity of turbulence. In
coordinates convected with the mean flow

Qij(gk H T) = Qij("gk 3 -T) (7-5)

6. Taylor's hypothesis; temporal history at a
fixed point is related to the convected spatial
structure by

du.u. 2 2 Ju,u,
(-—5-1) = v, (-ﬁ-l) (7.6)
1

(o]

The decay of Q.. with 1 in convected coor-
dinates makes thds only approximate. A memory
function gij(t) will be used to account for
this decay in separation time in a convected
coordinate system.

7.2. Previous Approximate Functions

Frenkiell?’2? evaluated a family of approximations for the iso-
tropic lateral velocity correlation g(g) of the form

g(&) = V(&) exp [-|eg|™] (7.7)
where

V(E) = a  +)a  cos (m c&) (7.8a)
or

v =1 +¥a c'lel” (7.8b)

He found adequate agreement with wind tunnel data could be achieved
near £ = 0 only for m > 2 , but over the whole curve an adequate
approximation could be found for 1 <m < 2.

For aerodynamic sound analyses, Ribner?!,2?? approximated the
fluctuating pressure correlation using the Gaussian form

p? = p2 exp [-a2(g; - UD? - ade)

2 2
p6p ~ @

2¢2 - o2alu%21 (7.9)

where provision for different turbulent scales is made in the factors
ay » a, and ag .

35



Several investigators have based their calculations on locally
homogeneous isotropic turbulence correlation models.!,?2,23,2%,25

Goldstein and Rosenbaum?® treated a more refined model of axisymmetric

turbulence, using a zero time delay function similar to Eq. (7.7) with
m=1 and ¢(x) =1

7.3. Present Model
The trial function selected here combines some of the features

of the Frenkiel and Ribner models described above. The rationale
underlying its adoption is discussed below and its limitations will

be presented shortly.
The model we will use here is

Qij(gl’gZ’EB;T) = (uiuj)o Rij(E1,€2’€3;T) gij(T) (7.10a)

- 2 2 2
Rij(£1)€29£33T) - [1 = aij(gl - Ul T) - BijEZ = Yij€3

0
2
U .
(E - 71 T)
. 1 o
- My (e, - vy T)gz] eXP[“ 7
o o331
9 2
&7 £3
- 2 - 2 (7.10b)
%9352 Y9433

where there is no summation implied in Eq. (7.10a). The spread ojjk
for the 1ij correlation in the kth coordinate direction is simpli-
field somewhat by writing it

cijk = Oijck (7.11)

Thus, the anisotropy in spread is assumed equal among the different
correlations.

The model guarantees that the correlations approach zero at
large space separation since they decrease at least exponentially
with £f . gjj(t) , the memory function, may be calculated numeri-
cally but will be evaluated near 1 _= 0 as we show later. Qjj ap-
proaches zero exponentially with 12 and with gij (1) unless we are
translating with the flow at velocity Uly , in which case loss of
correlation is dependent primarily on gji(t) . The gradient of
U(T%) is neglected in the trial function™ for this initial study. It

will be added later if it appears that doing so can improve the pre-
sent model. '
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The bracketed polynomial in Eq. (7.10) permits zero crossings
which are necessary to satisfy continuity. Equation (7.10) does not
do this in the differential sense (Eq. (7.2a or b)) but we force con-
tinuity in an integral sense as follows. From Eq. (7.3a) we integrate
the equation over half-space for each coordinate direction

:105 wda m de, =0 | (7.12a)
2 3] 3E, 1 | -Lca
Jdalld%fﬁ-’;ﬂ g, = 0 - 7.12)

© o oanm , ‘:
]d&ll dnggq— dg, = 0 (7.12¢)

The alternate statement of continuity, Eqs. (7.3b), is not independent
of Eq. (7.a) (see Batchelor?’, p. 27). The results of Eqs. (7.12) are
five independent equations in the model parameters.

The continuity constraints require that no net flow passes through the
three perpendicular coordinate planes passing through & = 0 . Since
we may translate these planes freely in the homogeneous flowfield
without effect, these conditions are met everywhere. Note that these
conditions are 1 dependent. ‘ '

Qij 1is expressed in Eq. (7.10a) as the product of the_zero sep-.
aratiom, one-point, one-time double-velocity correlation - (ujujlo .
a normalized function which we designate as Rjij(£1:¢& ,£3,T) , and
the normalized memory function gij(T) . Rij(0,0,0;Og =1, and we

specify gij(O) =1

Taylor's hypothesis is satisfied by writing the flow direction
argument as (&1 - U10T)2 . Rij is symmetric in this argument since
1 changes sign with &7 . In'calculating the dependent parameters
it is important to separate the variations that occur due to convec-'
tive effects, i.e., separation coordinate changes, from variations
that occur in convected coordinates. It is the latter that consti-
tute: the actual variations that are of interest. Thus, in solving
for the time variation of the function parameters the convective
velocity is set equal to zero. The decrease in Qjj with conyective
separation is accounted for by the convective argument (&1 - U1,1)

gi3(1) provides decorrelation in the coordinate system translating
wi%h the flow.

37



One of the ¢, functions is set equal to one both initially
and for 1 > 0 . Kt T = 0 we specify one length scale in the same
direction. For 1 > 0 the memory function is used to provide the
remaining time dependence of the length scale in the appropriate
direction. The o033 spread functions are not taken to be time de-
pendent, being set %y specification of the initial conditionms.

These initial conditions are calculated from the governing equations
with separation time derivative equal to zero. ( Qjs5/3t = 0 at

1 = 0 since the flow is assumed homogeneous and stationary). Note
that initially only one parameter is specified, the integral scale
of turbulence for one 1j correlation in one coordinate direction.
The integral scales in the k =1, 2 and 3 directions are defined by
(no summation)

o)

Ag)m = gij(T)f R;;(6) = UT,0,0;10d(&) - UD) (7.13a)
(o)
A3 (1) = ¢ m[R (0,,,0;7)dE (7.13b)
1] 1] 13(0:89,05T)dE, 7.
0
A3y = g (0] R,.(0,0,E,;1)dE (7.13¢)
i] 1] 15(0,0,8557)dE4 +13¢)

0

One value of A§?)(O) will be specified by integrating a sel-
ected experimental measurement of Rjij(§k;0) over €k - Note that
this is not a universal specification” but must be done for each
individual flow analyzed.

The Ojs 5 Bij and Yij parameters, which are 1 dependent
serve to satlsfy continuity in the integral sense discussed above.
Qij will have zero crossings dependent upon the determination of the
aij Bij and Yij functions, (as well as on oijck)

7.4, Model Limitations

The most serious limitation of the model is its restriction to
only the integral scales of turbulence. Thus, although the behavior
of the energy containing eddies can be represented by the model,
there is no explicit dependence on the turbulent dissipation scale,
or microscale. Therefore, we must expect that the chosen double-
velocity correlation function will not provide a good representation
of data in the region of small spatial separation. This can be reme-
died by adding additional terms to our model which are scaled by

(k) (k)
Aij rather than by Aj.

3 where Ag?) is the directional microscale
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for each Qjj . Indeed, the ideal representation would be an inte-
gral functlon which 1ncorporated the entire spectrum of scales which
occur in the flow and which account for the behavior of the turbul-
ence in wavenumber space. However, for this initial study the
analysis will be based on an integral scale model only. Note that
better agreement could be achieved near £, = 0 by using an

exp (-|&k|) type dependence. A Gaussian ¥as chosen here in antici-

pation of adding the microscale dependence once our concept has been
proven valid.

8. MOMENTS OF GOVERNING EQUATIONS
8.1. Convention for Nondimensionalization

Equations (7.10) are now substituted into Eq. (5.5) and inte-
gral moments are taken with respect to the coordinate directions.
Before doing this, it is convenient tonondimensionalize the varl-
ables by a length scale q/(dU;/dx9) , a time scale (dUildxz)‘ ,
and a velocity scale q .

The definition of A , Eq. (6.7) is carried forward and we
define '

N = & ' (8.1)

The parameters used to nondimensionalize the variables of the
analysis are given below in Table 2.

With the understanding that all variables appearing henceforth
are nondimensionalized unless noted otherwise, the model equations
governing Qij appear as

3Q. 3Q. )
i ij _ 1
_.1 + (U + &) a-gil = - (859Qp5 + 851Q59) - AlQyy - 38;5Q,]
2
+ NV Qij - ZbAQij (8.2)
where
Qij = uinijgij(T) (no summation) (8.3)
and
R.. = [1 (B, - U2 = B, E2 = vy, .E2 = u.. (&, - UD)E,]
ALt 1352 7 Y1383 ~ ¥13(8 2
. 5 |
€ €
. exp[— ——]é— ':L?f (51 - UT)2 + ——%- g}}(no summation) (8.4)
9i5 1@ €2 ¢3l
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TABLE 2

Nondimensionalization of Variables

Variable Nondimensionalized Nondimensional
by: notation
2
U q U
1o
—— 2
(uiuj )0 q uij
o [q/(dU, /dx,)12 o
ij 9 1/9%2 ij
Bij B13
(k) (k)
Aij q/(du, /dx,) Aij
£y Ex
Oij Oij
v 1-
T (dUlldxz) T
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8.2. Summation Convention

Since it will be convenient from this point on to discard the
summation convention when denoting the velocity correlation sub-
scripts i and j and the direction subscript k , these will be
reserved exclusively for these purposes. Therefore, whenever i ,
j and k appear as subscripts, no summation will be implied.
Other subscripts denote the summation convention as usual.

8.3. Moment Function

There are no set rules regarding which moments will give an
optimum result when using this method to obtain solutions to any
given problem. Given the number of unknowns and the governing dif-
.ferential equations determines the number of moments that must be
taken to obtain a sufficient set for solution. The philosophy used
during this analysis was to develop a family of rational moment
functions and to avoid a partial application of any subset of this
function. For instance, if the function were Ek:, k would have
to range from 1 to 3, and not just from 1 to 2, etc.

The function chosen can be written as 1 (my) where the érgument
denotes the product of coordinates of subscript k each to the power
mk , k ranging from 1 to 3. :

= = gW]Mp,m3
M(my) = T(my,my,mq) = E745,285 (8.5)
thus for example
_ .0.1,.2 _ 2
1(0,1,2) = £1&585 = £,&3

The integrated moment of Qij with weighting function (my) is
then defined as

(mk) |
I =fff M(m)Q, ;dg; de,de, (8.6)

The integral moment of Q-j
therefore expressed I(0,1,2)
_ ‘ ij

with weighting function, £2€§ is

Other integral moments that will be required are defined as

o0 oo oo

- (my) 9Q. .
K® _ i3
Cij fff Ir(mk)[U + 52] 351 d£1d52d53 (8.7)

=00 = 00 = OO
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(m, ) .
Dijk =j/fn(mk)V2Qijd£1d£2d£3v (8.8)

- O 00 OO

8.5. Family of Moment Equations

Taking the moments of Eqs. (8.2) with respect to the weighting
function 1T (mg) then leads to a family of equations of the form

d (my ) (my ) _ (my) (my)
dt [Iij +Cism = %ty t951ti
(m, ) (my)
k 1 k
- A[IlJ - —3—<Sij %) ] (8.9)
(my ) (m; )
+ WD, 5 - 2bAT,.K
1] 1]
(my )
Integration by parts may be used t? eyaluate Cij , while
m
Green's theorem is used to determine Dijk rather simply. Over
volume V
T(m )v2Q, - Q7> Tmy) |dE;dE,dE
k ij ij k 17°27°3
\Y (8.10)
-~ -
= Hn °[H(mk)VQij - Qijv H(mk)] ds
S
where S

is the area bounding the volume of integration V
is the outward pointing unit normal to S

and n
. Letting V go to in-
finity, the bounding integralsvanish since Q.. approaches zero
exponentially. Then .

o o0 0

- 00 =00 Q0 0 0 oo

= 2



Starting with . my, = (0,0,0) the moments can be evaluated in
increasing order. )

The lowest or zero moment mk = (0,0,0) is related to the
anisotropic scales Agg) , where the moments are taken along the
coordinates, see Eqs. ~(7.12). The first moments in each coordinate
direction my = (1,0,0) ; (0,1,0) ; (0,0,1) are zero since the tur-
bulence is homogeneous and these are odd moments. The first mixed
moments, my = (1,1,0) ; (1,0,1) ; (0,1,1) make a contribution due
to the skew symmetry produced by shear in the (£31,£2) plane (mani-
fested in the correlation function by the presence of wujj). The
family of moments required for this analysis ends with the second
moments mk = (2,0,0) ; (0,2,0) ; (0,0,2) giving a sufficient set
of equations to provide solutions for all parameters. '

Before evaluating the integrals defining the moment functions
some definitions are made for convenience. Let

8; 5 = uijoijcl (8.12a)
Bys = B159%5¢ (8.12b)
qij = Yijcijcg (8.12¢c)
ﬁij = uijoijclcz (8.124)

The correlation function, Eq. (8.3), is now substituted into :

the integrals defining Aék) , Ig?k) ) c{?k) and D%?k) to relate
them to the correlation fihction parameters. Note that these inte-
grals are to be evaluated for U = 0 since the parameters are being

calculated in a convected coordinate system moving with the mean
flow.

m, = (0,0,0) - Th?kipecialized form of the zero moments are the
anisotropic scales AYY

i3
(1) _ /7 ~
Aij =T Clcij[z - aij] (8.13a)
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(2) _ /7 .
hi3" = 5 93502 - B4y

A3 -

i3° T % ©393502 - v44]

(8

(8

mp = (1,0,0) 5 (0,1,0) ; (0,0,1) - As noted above the first

moments are zero.

me = (1,1,0) 5 (1,0,1) ; (0,1,1) - Only the first of these

three mixed moments is non-zero and results in

(1,1,0)  3/2 5 )
L T T Y43813913%1%%3H 1

(m, ) (mk)

The associated values of Cijk and Di' are

J

(1,1,0) 3/2

_ 5 3 -—I\ S
Cy; T 77 Y33833915€12¢3 [1 - Flags + 38,4
(1,1,0)
D.. -0
ij

me = (2,0,0) ; (0,2,0) 5 (0,0,2)

(2,0,0)  3/2 5 3 . A
i = 7 U4385393361¢003 1 - 530y, + By
(0,2,0) 3/2 ’ 5 3 1 A 3/\,
L5 = U7 Y438359331%203 [ - playy + 38,4
(0,0,2)  3/2
:0,2) | 5 3 14 A
LFY T 7 U43843%13%1%203 [T - glogy By

(8

(8.

(8.

(8.

(8.

(8

.13b)

.13¢)

.14)

15)

16)

17a)

17b)

.17¢)



(2,0,0) ,3/2 ) .
Cij = —5 uijgijoijclczc3uij61k (8.18a)
(0,2,0) (0,0,2)
Cij = Cij =0 : (8.18b,c)
(2,0,0) (0,2,0) (0,0,2)
Dyj =Dy = Dy; (8.19a,b,c)
_ 5.3/2 3 1. 4 *
= 27 uijgijoijCICZCS [1 —.z(aij + Bij + yij)].

The mixed moment (1,1,0) provides one set of equations in the
11,22,33,12 components. The second moments provide three equations
for each ij component corresponding to the three coordinate direc-

tional moments. Note that CS?’O’O) = Zolkl(l’l’o) and Cg}’l’o)
1] 1]
= I§?’2’0) , coupling the mixed and second moments. '

8.6. Integral Continuity Constraints
Substitution of the correlation function, Eq. (8.3) and Eq. (8.4),

into the integral constraints, Eq. (7.12), yields the following five
equations

~

By ¥ ¥qp = 2 (8.20a)
Gog + Ygop = 2 (8.20b)
g3 + 833 = 2 (8.20c)
01y + ¥yp = 2 (8.204d)
Bip + ¥gp = 2 (8.20e)

8.7. Method of Solution

The integral moment equations, the continuity constraints and .
only one of the integral scales are sufficient to define the correla-
tion function parameters by integrating Eqs. (8.9). At 1 =0,
3Qij/3T = 0 is the initial condition required. Differentiation of
the” correlation function with respect to 1 yields the conditions
that aij(o) =0, Bij(o) =0, etc., for this initial condition to

45



be valid universally. With these conditions Eqs. (8.9) become a set
of nonlinear algebraic equations in the correlation parameters at

1 = 0 which may be solved to determine their initial values. If it
is assumed that the acoustic sources are compact then a solution
derived by expansion of the variables about Tt = 0 can be determined,
which has the advantage of providing an analytical solution for the
higher derivatives in T . Since the fourth derivative with respect
to t 1is required to evaluate the acoustic integral, this approach
will avoid numerical evaluation of the derivatives.

Since the first derivatives are zero at T = 0 the correlation
parameters which are chosen to be functions of time in this simpli-
fied analysis are expanded in series in Tt as follows

b = 8., +a.. T2 4o, Tt e (8.21a)
ij ii, 13,y 1y

B = B.. 4+ B.. TP 4B Tt ... (8.21b)
iy i3, 1, EANA

S = Yir + Yis 2+ v.. 4+ .. (8.21c)
ij ij, = 'ii, ij, ,

g.: = 1+ g.. %+ g. . 14 + ... (8.214d)
ij ij, ij,

The decorrelation function b is 1 dependent, as it must be
for gij to vary from its initial value. Expressing b as a
series in T1/Tp , where 1Tp 1is the characteristic turbulence time
A/q , the nondimensional expansion is

_ 2.2 3.3 A
b = bO + blAT + b2A < + b3A 7 + baA T 4+ ... (8.22)

where b, are specified constants. Nothing is known about this
function at the present time and definition of the physics and form
of this parameter is put off to a following study. bp will be
chosen by matching the results of the present analysis to the distri-
bution of measured acoustic data.

Substitution of the expansions, Eq. (8.21) and Eq. (8.22), into
the moment functions, Eq. (8.14) to Eq. (8.19), yields series
(my) (mk)
I.. , C..
1] 1]

coefficients which are functions of aij s pij , etc.

expressions for and Dg?k) in powers of T with
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(m, ) (m, ) (m,,) (m, ) (m, )
1. K =, Ky k21 kK3, KA

LK = I.. .. .. . .

i i, ij, 1] 4 T 1J4 + (8.23a)

(m, ) (m, ) (m, ) (m, ) (m, )

B e e T UL AT (8.23b)

lJ. lJ o lJ 2 lJ 3 lJ 4

(m, ) (m, ) (m, ) (m, ) (m, ) :
DX =p, Kap K24 yp K3 ip Kby . (8. 23¢)

ij i, ij, 14 13y '

Separation of Eqs. (8.9) into terms in powers of 1 then.pro—
vides a set which may be solved for successively higher coefficients.

(o]
T
(m, ) (m,,) (m, ) (m, ) (m, )
k k. k k 1 k
.. ) . LI .. =5..1
Cljo + [6111230 + 631112 ] + A [1130 3613 28 ]
(m) (my) |
- ND..S + 2b AI..N =0 (8.24a)
ij o 1]
(] (o]
1
T
(m, )
1. a2 (8.24b)
12 1% 7
2
7
31(mk) _ C(mk) s I(mk) . I(mk) o I(mk) 16 (mk)
ij3 ij, il 2j2 jl i22 ij, 371j 222
(m, ) (m,,) (m, )
+W,.K - [b I..K 4 bZAZI..k ] (8.24c)
ij, 07ij, ij,
T3:
(m, ) (m, ) (m, ) (m, ) (m, ) (m,, )1
41,5 = - ¢, K . {S.llz.k + 6 1I.2k ] A [I k % . sz
13y 113 11413 J+ teg 3 ke
(m, ) (m, ) (m, ) 3 (my )
+ ND,.K - 2A [b I..5 4 b.AL.X 4 b.A’I,.K
ij4 07ijq 1 iy 3 ij, |
(8.24d)

47



Solving the nonlinear algebraic set of zero-order equations,
Eqs. (8.24a), provides the initial conditions for the correlation

parameters at Tt = 0 . The model constants that must be specified
are A , by , ujj and v, . The solution provides Gijys Bijg »
Yijo L P Oijo and ck, . The initial value of gij(T) is
specified as gij (o) = Bijo = 1.0. For now, we assume 0y

. , Ui-
and ck do not Vvary with geparation time, affording consiaerable
simplification without undue loss in generality.

Since the higher-order coefficient equations are linear in those
of lower order, Eqs. (8.24) provide the series expansion coefficients
needed to define the separation-time derivatives at 1T = 0 4using
elementary matrix algebra.

9. RESULTS AND COMPARISON WITH TURBULENT SHEAR FLOW DATA

Tables 3 and 4 present the zero-order coefficient solutions to
Eq. (8.24a) for model constant values A = V2 , uj] =1/2 , up2 = 1/4
u33z = 1/4 , u12=-1/(4v2) , v¢ = 0.3 and three values of bg: 0.0,
0.02 and 0.05. Figures 3 and 4 are plots of the correlation function
Rij for bp = 0.0 and 0.05, respectively. Comparison of these
figures with measured two-point, one-time turbulence correlations
makes possible an evaluation of the qualitative aspects of the re-
sults. Such measurements in a two-dimensional constant shear flow
have been made and reported by Champagne, Harris and Corrsin'’,
Harris, Graham and Corrsin'®, and Rose2?®. Figure 5 presents mea-
sured values of Rj1 and R12 measured along the coordinate direc-
tions at T = 0 as measured by Harris, et al.'® The directional
behavior of these correlations are tgpical of those measured by
Champagne, et al.'” and Rose et al.?® The measurements in the ¢£3
directions, normal to the mean flow and velocity gradients, decrease
most rapidly with separation distance and exhibit extensive regions
of negative correlation. Those in the flow direction, g1 , are
slowest to decorrelate. These characteristics are present in gen-
eral in the theoretical predictions, although the trends are some-
what exaggerated. Since Rij(z;O) < Rj3€¢0,0) in a physical flow,
the theoretical behavior of "R33(0,0,£330) in both Figures 3 and 4
is the most serious discrepancy in the model. It should be remem-
bered, however, that the present model is an integral representation
and as such may exhibit local inconsistencies with little serious
effect in its portrayal of overall behavior. Including the effects
of a turbulent microscale explicitly in the correlation function
would probably eliminate the undesirable overshoot in R33(0,0,£3;0).
Examination of the model also reveals that employing a directionally
dependent value of v, could reduce the negative overshoot in
Rj3(0,0,83;0) while increasing the rate of decorrelation in
R;:(£1,0,050) with separation distance, thereby improving comparison
be%ween measurement and theory. This was not done for the present
until more empirical evidence can be found to justify this extension.
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Trial-Function Coefficients at Zero Time Separation

TABLE 3

ij

11
22
33
12

11
22
33
12

11
22
33
12

o B O O o B O O

o O O O

ijo

.1227
1746
.308

.1186

.1068
.1500
.3277
.0037

.0743
.1006
.3726
.0728

o o O O o O O o

o o O O

B.

1jo

.1169

.1151

.6916

.1186

.1028
.1015

.6723
.0737

.0721
.0718
.6274
.0728

A

3

iJO

b =20.0

.8831
.8254
.9082
.8814

.02

.8972
.8500
.7699
.6768

.05

.9279
.8994
.5060
.9272

ﬂijo

.0990
.1495
.2216
.1028

.0784
.1086
.1730
.0237

.0386
.0493
.0572
.0382

N

O..
i :
JO

e e

H oo M

=

.1985
.1675
.0254
.1959

.1896
.1687
.9739
-1882

.1706
1624
.8522
.1700
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TABLE 4

Scale Factors at Zero Time Separation

b (o) 0.0 0.02 0.05
k

1 3.6313 4.4728 6.8162
2 1.0000 1.0000 1.0000
3 0.3028 0.2830 0.2358

10. RADIATED ACOUSTIC POWER BASED ON
TURBULENT CORRELATION FUNCTION

From Eq. (3.8) the acoustlc power radiated in direction (y,¢)

from a unit volume element at ¥ is, in the Proudman formulation
and in dimensional form

Ps

4

> P 2,2

P(Y,0,y) = f vva© dg (10.1)
16w cg 2 4

where Vx and v. are the components of total velocity at y'
and y" in the direction of % , see Figure 1. Since X and
are nearly parallel for X in the acoustic far field, we shall,
approximate x by T . Let the total velocity at & = 0 be v

and at ¢ , ¥' . The mean flow is along &7 so that the compon-
ents of total velocity are

>
r

v = ui + alkU " (10.2a)

vi = ui‘+ SlkU (10.2b)
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where uy and uj are the fluctuating components. The velocity
components vy and vx in terms of vj and v} are, to a first
approximation®

<
I

v, cos Y o+ v, sin ¥ cos ¢ + Vs sin ¢ sin ¢ (10.3a)

<
I

v, cos Y + vé sin ¢ cos ¢ + vé sin ¢ sin ¢ (10.3b)

The correlation Vivgz is found by substituting Eq. (10.2) into
Eq. (10.3); squaring Eq. (10.3a) and Eq. (10.3b) and forming their
product and taking the ensemble average. The result is_an,expres;

. A . RTIRTIZTL 1 7 2111 2 270 e
sion containing terms in uiupujuq , UU u]._u.j , UsU , U u;s, U u.j
Uuiuj2 , and U‘u'iu.2 . The first two of these will contribute to

the flow noise. The following three are constant with 1 and will
vanish upon differentiation. The last two terms are triple-velocity
correlations. For homogeneous, stationary, turbulence, these are
odd functions by invariance with reflection of coordinates. Change
of sign of coordinates must be accompanied by change of sign of
separation time. Since we have assumed the correlation function
may be expressed as the product of separation space and separation
time variables, the triple-velocity correlations will integrate to
zero over separation space.

In order to provide a tractable analysis for the fourth-order
correlations, normal joint probability of wuji and uj is assumed.
This is done based on Batchelors?’ argument that the part of the
joint probability distribution of the velocities associated with
the energy containing eddies is approximately normal at a fixed time
and at points sufficiently separated_ in space. This assumption has
been used by numerous investigators.!,®,22,23,2%,26,27,29 Goldstein
and Rosenbaum?® extended this argument to time separation by arguing
that the correlations will be subject to even more random influences
from the neighboring flow when they are separated in time. Thus,
their joint probability should be even closer to normal.

Using the assumption of normal joint probability the fourth-
order velocity correlations may be written (see Batchelor?7’)

The effect of t on the components of Q, and vi in the direction
of X is of order &/x << 1 and will b& neglected in this analysis.
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u.u uju (u u )(uju ) + (u u ) (u uq) + (u u )Y (u uj)

p P

Qp(00Qy€0) + Q500 + QyQps (10. 4)

The first term on the right will vanish upon differentiation with
respect to T.

The other nonvanishing term is of the form UU'uiu: , where
U' = U+ &9 nondimensionally. For simplicity the garlation in U
w1th ) lS dropped and only the leading term in U4 is retained.

"This leaves terms of the form UZG‘G‘
-y
The noise associated with the fourth-order turbulent correla-
tions has been designated self-noise, while that generated by terms

of the form Uzuiuj is known as shear noise. These contributions
will be written separately in what follows.

P,9, y) , the sound power radiated along X in the direction

(v,6) per unit volume of shear flow per unit area at x may be
expressed as

7
A L du; > A
-> -> ] .
P(V,6,3) = 11 g [ql(]Y)] {Uz(y)ZAijuij & (g W)
m |

677 m 2 - 3T 11
1]
34
+ B. W 10.
1jpq ij pq 5 8 < 138pq 1JPQ) (10.5)
1Jpq
Although not explicitly stated, . and u are functions

of absolute space when a real flow is tr%ated using the '"locally
homogeneous' approximation.

Ajj and Bjjpq are functions of ¢ and ¢ as derived by ex-

pansion of v2v;<2 The summation sign indicates summation over all

correlations that contribute to the sound power, P(y,¢,y) 1s non-
dimensionalized as follows

. . COxL_P($,0,3)
P(Y,6,y) = 5 - (10.6)
poUm :
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wij and Wiqu are the integrals of Rij and Rinpq over sep-
aration space
Wy =j[f R; ;dg;dEydE, (10.7a)
W.. = R..R d¢,d .
1jpq [f] ij pngl €9 53 (10.7b)

Up 1is a reference velocity and L, a reference length. Neither of
these is a function of vy .

2
The values of Aj35 and Bjs derived by expanding wvxvyx~ for
the correlations whicﬁqhave beetr icluded in tzis gnalys%s and ‘which

contribute to the sound power are shown in Tables 5a and 5b. The co-
efficients in these tables include the permutations of the indices of
the correlations to include all contributing terms.

If the shear flow is axisymmetric the sound power may be aver-
aged over ¢ , since the nonaxisymmetric power from individual volume

elements of the flow will mutually cancel on a time average basis.??
Define

2T
T =1
Aij T Aijd¢ (10.8a)
(o)
2T
= 1
L. o= F— .. d 10.8b
BlJPq 2m BlJPq ¢ ¢ )
o]

The results of these averages are shown in Tables 6a and 6b. The
¢-averaged sound power is expressed as

L du - 4
Ty =1 m "1 [g(y) 2, o 3 -
Py 161r2 Um dXZ [ Um ] {U (Y)iz_:iAijuij T (gij ij)
= 2" | 10.9
.. .. .g W.. )
* E%QBIJPqulJqu % (B138pq lJPQ)} (10-9)
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"Sound Directivity of ij and ijpq Components

TABLE 5a
ij Aij
11 4 éos4 Y
22 4 cos2 v sin2 Y cos2 )
33 4 cos? y sin® ¢ sin? ¢
12 8 cos3 Y sin Y cos ¢
TABLE 5b
ijpq 13pq
1111 2 cos®
2222 2 sin* y cos® ¢
3333 2 sin4 1] sin4'¢
1212 8 cos2 1] sin2 Y cos2 )
1122 4 cos2 V] sinz.w cos2 )
1133 4 sin2 ] cos2 Y sin2 )
2233 4 sin4 Y sin2 ) cos2 )
1112 8 sin ¢ cos3 Y cos ¢
2212 8 sin3 Y cos Y cos3 )
3312 8 sin3 Y cos Y sin2 ¢ cos ¢




¢-averaged Sound Directivity of ij and ijpq Components

TABLE 6a

13 Ay

11 4 cos4 Y

22 2 cos? y sin? y
33 2 cos2 !/ sin2 P
12 | 0

TABLE 6b

ijpq . B-iqu

1111 2 cos®
2222 3/4 sin® ¥
3333 3/4 sin® y

1212 4 cos? ¢ sin® y
1122 2 cos2 P sin2 Y
1133 2 cos2 /] sin2 P
2233 ¥ sin* y

1112

2212

o O O

3312




Integration of R.,. and R..R h .
yields egrati i3 an i5Rpq OVer the separation volume

- .3/2 3 1 P
Wij =T c1c2c3cij[l - 2(aij + Bij + Yij)] (10.10a)

3/2 12

- 3 "
=T C1C2C3Kiqu[1 - 2Kiqu {(cxij + apq)

W..
1jpd

~ ~

‘s 8 A.. +
+ (B__LJ + qu) + (YlJ qu)}

~ A

+ Y.
pq * "ijVpq

14 ~oA An |
t 4¥i5pq 13350 * Bi38 )

~ ~ ~ A ~ A ~ ~

+(@558pq * %pqPig) ¥ (13pq ¥ %pq"is’

~ A A A ~

+ (Bijypq + quyij) + “ij“pq}] (10.10b)

where

2. = 10.11
KlJpq O'g. + O ( )
ij * “pq

9 [ 0%.02
= 1 _Pg
The fourth-derivative of these functions at T = 0 are obtained
by substitution of the series expansions for the correlation para-

meters, Eqs. (8.21), taking the derivatives and setting T = 0.
The results of these operations are

84

9 - 3/2 3 (0)o(0)
7 (gy Wy ) = 247 c1c2c3oij[gijigjosij4] (10.12a)
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4 .

3 3/2 3 1%~ o

3 (g..g w.. \-= 3 1+ 2t q..
aTﬁ»(gngpq lJPQ> 2hm 71223 15 pg [( 4KlJpq“13“pq>G4

1/\2 ~ ~N ~
- 4Kij (<uijG> + <BijG> + <YijG><>

/\2 ~ N ~N
- < G> + <B_ G> + >
2pq ( ®*pq Bpq Ypq® )

+ FK.. 3 <a, ;0 G> + <A..A. + <A..A
4KlJpqz ( “15%pq% * “Pi3Ppq® YlJYPqG{>

~ A A ~

> + < G> + <a..
%pq® %13 Vpq

G .. G>
Pq Pq 1]

+ < .. G> + <B.. > + <¥y.. > .
“pq"13® T “PisVpq® * ViyPpe® i] (10,

where the various functions in these expressions are defined by

- —-];A ~ ~
Sijo [1 ZGHJO-+BijO-FYijO)] (10.
1/\ ~ "~
s.. =-2xfa.. +8.. +7v.. .
i3, 2<§L34 6134 v134> (10
-1
Egj - [1 + (?iJ/°pq)z] (10.
-1
2 2
& [1 + (o, /045 ] 2 (10.
" 2 2
.o = .. + Y . .
“ijpq [(GPq/OIJ) €©53/9pq ] (o
X;56 = XijoGa + Xi'sz + Xij4 (10.
- G, +Y G, + Y (10.
Ypq® 7 Ypg 4 T pa, 2
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<X..Y_G> =X,. Y G, H+ X,. Y + X.. Y G
ij'pq ij, Pq, 4 ( 13, pq, © “ii, pqz) 2
+ X,. Y + X.. Y + X.. Y .13h
1j9 P9y 1j, Pqy 1j4 P, (10.13h)
G, =g.. + . 131
2 8132 8pq2 (10.131)
G, =g.. + g.. + . j
4T Bij, 813,8pa, Bpq, (10.133)
Xij takes on the values of the expansion coefficients aij ) gij
and™ Zijn where appropriate, while qun symbolizes apqn o qun n
and vy .
Pa,

The sound power intensity I(y) for axisymmetric flow may now
be found by integrating Eq. (10.9) over the volume of absolute space
containing the turbulence. Since ujj » u and q4 may be func-
tions of ¥ for "locally homogeneous turgglence, it is more con-
venient to nondimensionalize the one-point, one-time correlations by

the reference mean velocity Up . Thus, I(y) can be written
8
_ 1 Pl Lo du®)
W) === 7573 T dx
167° ¢ x"L m 2
: o" m °g
F
>\ 2 >\ (u,u,) 4 '
U(y)> (q(y)> 1 [ 1% o] CR
. . g.:W..) (10.14)
{( Um Um z ij UZ aTA ijrij _
1] m !
> \7 | (u.u.) (u_u)) 4
+ () B. . iio pgold g W.. ) dy
| ijpq : |
where the integfal'is taken over the flow volume Vg and (uiuj)o ,
(upuq)0 , q and the gradient dUlldx2 may be functions of ; .

This completes the equations necessary to compute the sound
power, given the one-point, one-time turbulence velocity correlations
and the mean shear flow distribution. In the next section the theory

is applied to a shear flow and the acoustic power emission is
calculated.
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11. PREDICTED ACOUSTIC POWER FOR SIMPLE SHEAR FLOW

The sound power intensity equation, Eq. (10.14), requires the
spatial distribution of turbulence and shear. The test case selected
to evaluate the model developed here is an axisymmetric, annular shear
layer. The three-dimensional turbulence in this annular layer was
calculated based on a one-dimensional shear. Figures 6 and 7 illu-
strate the geometrical details. Figure 6 shows a one-dimensional
velocity profile schematically with boundary conditions U(-=) = 0
and U(+») = U . The turbulence was calculated using the second-order
closure model of Donaldson, with the mean profile allowed to evolve
to a self-similar distribution. The shear layer was treated as axi-
symmetric as shown in Figure 7, where the annular layer is treated as
thin, Ag << R , thus justifying the one-dimensional mean profile
calculation. The core velocity is uniform and equal to Ug .

The resulting turbulence and mean velocity gradient was then used
to calculate I(y) as given by Eq. (10.14), with Up/Uc = % . Since
the 1 dependence of the decorrelation function b is unknown, the
test case provided the opportunity to empirically assign values to
the expansion coefficients bp . This was done by choosing those
values of the coefficients which provided agreement between the cal-
culations and an actual sound power intensity measurement in decibels.
The test data selected were those reported by Lush.®° These measure-
ments were carried out using an axisymmetric subsonic jet as the
sound source. The annular shear layer assumption of the present
analysis precluded a direct comparison of the actual magnitude of
sound intensity. Therefore, the coefficients were assigned to pro-
vide agreement with the measured V¥ dependent directivity. This was
done by referencing the intensity to a selected value at ¢ = 0

dB(y) - dB(o) = 10 1og10<%%> (11.1)

Figure 8 presents the comparison obtained for the following b(Tt)
expansion near 1 = 0

b(t) = 0.02 [1 + 16AT - 6272 - 2433 ... (11.2)

i.e., bg = 0.02, and specifying dB(o) = 100 for Vj , the measured
jet velocity, equal to 300 m/sec. The predicted distributions for ‘
V; = 195 and 125 m/sec. were obtained by decreasing the intensity using the

ratio of jet velocities to the eighth power. Note that the predic-
tions contain no convection or refraction effects.

The separate contributions of the self noise and shear noise
may be seen in Figure 9. For the values of bp selected to match
the measured directivity the self noise is nine times as large as the
shear noise along the jet axis. Although the total sound power dis-
tribution is in agreement with measured values, this ratio and the
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Figure 6. One-dimensional shear layer model
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Figure 7.

Configuration of axisymmetric flow used for
acoustic calculations, with the assumption

that AS << RJ . Flow is laminar in the core
region and outside the jet
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relative contributions of the self and shear noise predicted here
are only a preliminary assessment. Several factors which have a
large influence on the results require further study. The Q33 and
Q23 correlations have not been included at this point and the value
of b = 0.02 was chosen arbitrarily. Further effort is required to
define the behavior of b(r) . It should be noted, however, that
there appears to be a unique set of coefficients in the expansion of
b(t) which guarantees a decay in gjij(7) (i.e., the second derivative
of gij(t) less tha §ero) for a given choice for b(t) and the
selected value of A3} , which also correctly predicts the measured
directivity distribution. The nondimensional length scale

A{%)(O) = 1.0 , calculated using the data of Champagne, et al.'7 was

used.

Additionally, the spatial integrals over the jet volume are
based on an approximate velocity profile. Finally, as shown by
Goldstein and Rosenbaum,?® the ratios of the correlation scales have
a profound effect on the distribution of sound power. The values of
the scales for the present results appear to be too large in the flow
direction and too small in the direction perpendicular to the mean
velocity and the velocity gradient. No information on the integral .
scales exists for the Lush tests and, therefore, the use of the non-
dimensional scale length A{%) = 1.0 was continued. Investigation
of the decorrelation function b(t) and the influence of the ani-
sotropic scales in the generation of the sound power should be part
of the next phase of study.

12. CONCLUSIONS AND RECOMMENDATIONS

The feasibility of computing aerodynamic sound using a new
approach for the prediction of Qij , the two-point, two-time velo-
city correlations, has been demonstrated for a certain class of flows.
The agreement between measured and theoretical sound power emission
directivity and the ability of the technique to predict the behavior
of Qij in spatial separation indicates that one-point, one-time tur-
bulence models can be successfully extended to the two-point, two-
time problem. The chosen form of the correlation function is vindi-
cated by the favorable comparison between theoretical results and
measured turbulent correlations in three directions in separation
space. The results provide confidence that the present approach is
correct, although further effort is required. Three areas which are
recommended as subjects for the next phase of study are: extension.

of the theory to noncompact sound generation; investigation of the
" decorrelation function to provide a physical basis for the s ecified
variation of its separation-time behavior; and further consideration
of anisotropic scale length effects. An axisymmetric counterpart to
the one-dimensional shear layer calculation presented in this report
should be developed to permit application of the technique to axi-
symmetric jets. :
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