|
|
g
8

@ https://ntrs.nasa.gov/search.jsp?R=19780002544 2020-03-22T06:58:20+00:00Z

- During Software Development

, - -
H. Hecht, W. A. Sturm,
and S_. Trattner

The Aerospace Corpﬁération |
El Segundo, California :
“"“ , "

E Prepared for

| Langley Research Certer
W% under Contract NASI(V-IZ 392"

it

< .

 Information Office, |

(o7 TN

4

Report No.
NASA-CR-145205
[ATR-77(7590)-2]

RELIABILITY MEASUREMENT

DURING SOFTWARE DEVELOPMENT

Prepared by
H. Hecht, W. A. Sturm, and S. Trattner

September 1977

Advanced Programs Division
THE AEROSPACE CORPORATION
El Segundo, Calif. 90245

Prepared for

NASA Langley Research Center
Hampton, Virginia

REPORT DOCUMENTATION PAGE BEF o O O S RM

T. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
NASA-CR~-145205
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Final

Reliability Measurement During"
Apr 1976-Apr 1977

Software Development :
. 6. PERFORMING ORG. REPORT NUMBER

ATR~-77(7590) -2

7- AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
H. Hecht _

W. A. Sturm NAS1-14392

S. Trattner

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :SggR&AwOERLKEMENTT' PROBJEERCST, TASK
The Aerospace Corporation) UNIT NUM
El Segundo, California

11. CONTROLLING OFFICE NAME AND ADDRESS : 12. REPORT DATE
NASA Langley Research Center September 1977
Hampton, Virginia 13. NUMBER OF PAGES
96

4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Ollice) 15. SECURITY CL ASS. (of this report)

Unclassified

15a, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Unlimited

‘.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difterent from Report)

18. SUPPLEMENTARY NOTES

.
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Software reliability Error types
Reliability measurement Software reliability trend

Software failure ratio
Software failure rate

20. ABSTRACT (Continue on reverse side if necessary and ldentify by block number)

Measurement of software reliability was carried out during the
development of data base software for a multi-sensor tracking
system. The failure ratio and failure rate were found to be
consistent measures. Trend lines could be established from these
measurements that provide good visualization of the progress on thsg
job as a whole as well as on individual modules. Over one-half of

iii

RELIABILITY MEASUREMENT
DURING SOFTWARE DEVELOPMENT

o .
B el | N
v, &S ;’: way ¢ [
e g
W ame n 3
4 “Q";‘w}" ?f’g‘ﬁ;i»gﬂi‘s’*»r': N
R g FRTES R ey uv
£g LR TR Y
- J .~ L gl gs[‘,m
Prepared by 3w€3%53~ur%w -
&J' ltl },ﬂ)_4 '(:.’_Q'_i 3 ‘!’.‘ - ‘nf,’._ ¥
“ '5'¢1§"§5" e Eﬂ'kh:h-r— . F
S~y By s
1] 0;:.9 I3 ‘:":.J f

.

ATR-77(7590)~2

H. Hecht, Director
Digital Processing Office
Advanced Programs Division
Development Operations

694 W. Anderson, Group Director
Development Group Directorate
Advanced Programs Division
Development Operations

page
ntent"ona“y

RE Yy ot
i, -ff' PR B

c-Eh«

WL e prochdameetan
The work reportedw ere was, perqumed by The Aerospace
z§ %, 4 e

Corporation under Ccon tgﬁetwhbrmNASlﬂ&g$§Ziw1th the NASA Langley
Research Center under the technical guidance of Mr. G. E.
Migneault. It utilized‘data'collected from a software
development project sponsered jointly by the USAF Rome Air
Development Center, witP-Mr. F:énk Sliwa as the Project Engineer,
and the Metric Integrated Processing System (MIPS) team at the
USAF Space and Missile Test Center under the direction of Mr. J.
A. Salazar. The contractor for the development of the pertinent
MIPS segments is Federal Electric Corporation, and Mr. R. R. Hall
of that organization was responsible for implementation of the
data collection.

Much valuable assistance was received from Ms. Bonnie J.

Schmidt both in the maintenance of the software reliability data

base and in the preparation of this manuscript.

vii

page
mtent‘iona\\v

ACKNOWLEDGMENTS

SUMMARY 5%

I. INTRODUCTION. ...

II. OVERVIEW

III. THE COMPUTER PROGRAM AND ITS ENVIRONMENT. ... cuonunnnn.. 17
Iv. MEASUREMENTS AND TIME TRENDS . s s s socooeaccsnancennnnenns 21
V. VARIATIONS BETWEEN MODULES .« « s s s s mscecncnccasnonnnnnnnnn 39
VI. CAUSES OF FAILURE -« e e e e e e e e meeme e amee e ananannannns 45
VII. FINDINGS AND POTENTIAL APPLICATIONS. .- ceoeuuuunnnnnnnns 53
VIII. WHERE DO WE GO FROM HERE?. s uunnconseennnnnnnnnnnnnns 57
REFERENCES - « « « e e e v« . . e e e e e e e e e 59
APPENDIX A ~ BACKGROUND DATA FORMS . . s s suunncensanannnnanenannn A-1

APPENDIX B ~ ASTROS, ADVANCED SYSTEMATIC TECHNIQUES
FOR RELIABILE OPERATIONAL SOFTWARE:
ANOTHER LOOK. .. c.curenereccncncrncnsnnsncnnnccnnas B-1

ix

Page
Intentionally
Left Blank

3b.

4a.

4b.

Total and Progrgngailurf

"'?.’;&* i

Total Failures and Total Faliﬁ%gwhailos for All......... 14
Computer Program Run Analysis Report..........cccceacnsn 22
Computer Program Run Analysis Report Instructions....... 23
Computer Program Failure Analysis Report.........ccec... 24

Computer Program Failure Analysis Report Instructions...25

Comparison of Hardware and Software Failure RatioS...... 29
Total Failure Ratio for All.......... teecscsasnnnensanas 31
Program Failure Ratio for Utilities...........c.....o... 33
Total Runs and Total Changes for Utilities.............. 34
Program Failure Ratio for LDG.. ...t onnccnncnaan 37
Program Failure Rate for LDG.....c.cvveneecnncccrnonnsnnss 38
General Project SUMMALY-.cc.cccncenccoccnccnncacncsoncsns A-2
Program Schedule...... e ececesrscncsosessensassanssennan A-4
Management Methodology SUMMArY....cceeeceencncnnnnnansess A-5
Design and ProCcesSSOr SUMMAIY.caseocecosnassanononanannans A-7
Personnel Profile...ceececcecenenonncacosenancaccacaecaacanannns A-8
Personnel Profile Summary.......rceececeee. ceessacsnnnnsns A-9
Testing Summary........ e naann ceeesananana ereaseaas.-A-11
Top~Level HIPO Chart......cccoevceoevonconnconosncnonnnsa A-12

xi

Page
Intentionally
Left Blank

TABLES

Background Data Reporting FOrmS........ccocueuecmnencnnnn 20
Major Module Reliability Summary.....ccceeecceeeececcancs 40
Data for the First 100 Runs on Each MOAUle...eeesseeenn. 44
Failure Ratioé by Error Class for All...ceeevieennnn... 47
Failure Ratios by Error Class for Modules............... 48
'Failure Ratios by Error Class for Utilities............. 49
Relative Frequency of Errors (in percent)...... cerenaans 51

xiii

R -
31; ,’R ;]
Measurement of?é’o§ éﬁ;gbixiﬁﬁgé @arried out during

i._-ha

i,

the development of da%ﬁ?bigeﬁﬁrgtff?gggjrga multi-sensor tracking
system. Every run made during this project was scored as success
or failure, and supporting data were collected on forms for
further analysis. The failure ratio (number of failures per
calendar interval divided by total number of runs) and failure
rate (number of failures divided by CPU time for the interval)
were found to be consistent measures, on a month~to~month basis
as well as from module to module, and therefore considered valid
indicators of reliability in this environment. Trend lines could
be established from these measurements that provide good
visualization of the progress on the job as a whole as well as on
individual modules. Over one~half of the observed failures were
due to factors associated with the individual run submission
rather than with the code proper.

Possible application of these findings for line management,
project managers, functional management, and regqulatory.agencies
is discussed. Steps for simplifying the measurement process and
for use of these data in predicting operational software

reliability are outlined.

Page
Intentionally
Left Blank

1. ¢ "INTRODUCTION

Software reiiability is éggénéiéléﬁb some of the nation's
most widely publiciZéd‘Eebﬁnigéifﬁndértakihgs, e.g., the Space
Transportation System and theiéontrol of nuclear power. The
dramatic advancements now taking place in microelectronics and
memory technologies, accompanied by significant reductions in
computer hardware costs, will lead to even greater use of the
programmable digital computer in the foreseeable future and hence
increased dependence on software. The speed and flexibility of
the computer make it, in principle, an ideal choice as a multi-
variable controller in real-time systemé ranging in complexity
and physical scope from sophisticated aircraft flight controls to
unmanned mass transportation systems. In these and other
instances where the system being controlled interacts with the
public at large the safety of increasingly large numbers of
people will depend on the reliability of the software. Hence,
software reliability-~what it is, how to measure it, how to
estimate and/or predict it, and how to achieve. it--is a subject
of more than just academic interest. This report addresses the
first three of these aspects of séftware reliability with
emphasis given to reliability measurement.

For the purposes of this study we have defined reliable

software as follows:

It is software that is correct (capable of execution and
yielding correct results) and that meets other user
rquirements such as timing and interfacing with the
environment.
This concept is consistent with an earlier statement, "Software
possesses reliability to the extent that it can be expected to
perform its intended functions satisfactorily“l. There is
justifiable concern about attempting to base measurement on
"intended functions", but more restrictive formplations tend to
prevent recognition of reliability problems arising from poorly
drawn specifications. A need exists to evaluate software
reliability against formally'specified as well as against more
loosely defined (and particularly implied) requirements.

For reliability measurement the software is operated ovef a
period of time, segments of the operation are scored as failure
or success by the qualitative criteria cited above, and from
these scores an indicator of measured reliability is generated.
Typically, the software will not be modified during the period of
measurement, and the developed reliability numeric is applicable
to the measurement period and then-existing software
configuration only.

Estimation of software reliability is performed by taking
reliability measurements (as above) on an existing program and

modifying the result to represent the reliability in a different

operating environment. Estimation requires some quantifiable

relationship between the measurement environment and the
environment for which the estimate is to be valid.

Prediction of software reliability is any statement about the
reliability of a computer program that is not based on
measurement taken on that particular program. While this terse
definition may permit predictions based on casting of dice or
even less respectable methods (which, according to rumors, are
sometimes utilized for that purpose), prediction is normally
based on comparison of program length, cbmplexity, and
environmental requirements with those of a program for which
measurements exist.

The ability to measure and predict software reliability is
required for the proper development and application of critical
computer programs, but suitable measures for this purpose are not
yet in general use. This study has identified two quantitative
indices, the failure ratio and the failure rate, that promise to
fill this need. They are obtainable from records usually
maintained in the development of critical software; they are
consistent in time and among modules for the specific program
studied; and they are potentially useful for management and
research purposes.

Although the motivation for this study is the measurement and

improvement of software reliability in an operating environment,

the results reported here for the development phase are
significant for three reasons.

a. The cost of "fixing" software is low during this early
stage and increases considerably after it is documented,
formally accepted, etc. To the extent that reliability
measurement during software development can point to
problem areas, it will permit corrective effort at the
most effective level.

b. The level and the trend of reliability during
development may be an indicator of reliability during
formal test and operational phases. The validity of
this assumption can only be established by following
this (and possibly other software products) through
further stages of the life cycle, and it is intended to
do so.

C. The data analysis and data presentation techniques
developed here can be carried through test and
operation. Trying out new data collection techniques

might be very objectionable in an operational
environment.

Following this introduction, an overviéw has been provided
that outlines where and how the primary data were obtained,
describes the general methods of analysis, and reviews a sample
chart. The body of the report first describes the computer
program on which these measurements were taken and the
programming and data collection environments. The next section
describes the measurement process, }ntroduces the general
analytical procedures, and presents findings on time trends of
software reliability. This is followed by a section that

summarizes data on individual modules of the computer program and

discusses differences between modules in the measured quantities.

Causes of failures are then discussed, summaries on these are

presented, and a comparison of causes of failures found here with

g}&ﬁe%ext-to—last section
presents a summaryN f@ﬁgq‘gﬁg rEFrdurln th1§$phase of the study

%ly EW ’gg%}é lséég?:ned so far.

and suggests applicationg ofhwh

Readers who are confr&ﬁ%é ﬁl@igﬂmmg%ﬁﬁﬁa ﬁtoblems in software
KRR A AN wds B e math

reliability measurement may want to start their perusal of this

T

those reported earlier is mgy

s

report with that material (Section 7). Recommendations for

further work in this field are contained in the final section.

Page
Intentionally
Left Blank

II. OVERVIEW

The motivation for the study‘was the growing concern with the
reliability of softwa:e.in cr;ticql_applications, and
particularly in futuré“aifAtranspért where'thé safety of aircraft
and passengers demand flawless performanCe of software programs.

The data analyzed in this report we;e collected during the
development of the Launch'Suppo}t Data Base (LSDB), a portion of
the Metric Integrated Processing System (MIPS). LSDB includes
data management functions, coordinate transformationss, and other
scientific calculations supporting track generation from multiple
sources. It is run prior to launch operations without real-time
constraints. The data covers the development of the LSDB from
coding through the in~house test phases prior to acceptance by
the government. During the initial part of this period the code
constantly expanded as runs were being made, and the effect of
this on the reliability measurements is discussed later in this
paper. During program development there was no unusual pressure
to control reliability for current runs, but the aim was to
produce software that would be reliable in operation.

LSDB was developed as part of a demonstration program on
structured programming techniques. Personnel were motivated by
théir participation in a demonstration, and the data collection

efforts and management attention may constitute further factors

for making some of the data presented here not completely
representative. Arrangements have been made to collect similar
data on another MIPS component where programming techniques are
not prescribed. Assessment of unique factors may be possible by
comparing reliability measurements from these two efforts.
Further information on MIPS and LSDB is presented in Section 3.
For every run made on LSDB, a run analysis report form was
completed that listed the date, the module name, CPU time for the
run, and coded information on the number of changes and run steps
(coﬁpile through execute). The run was scored as a success oOr
failure by the development group. If it was identified as a
failure, additional information, contained in the failure
analysis report, was provided which identified the type of
failure and the cause. This form, too, was prepared by the
program development personnel. The principal metrics developed
from the information in these forms are the failure ratio and the
failure rate. The former is the ratio of failed runs to total
runs over a dgiven period, usually one month. The failure rate is
the ratio of failed runs to the total CPU time accumulated over a
given period, again usually one month. Both of these measures
were evaluated for LSDB as a whole and for individual modules.
Some differences in the information furnished by these measures

are discussed in Sections 4 and 5.

10

In the course of the study it was observed that many runs
ended in failure due to improper data setups, job control cards,
or other factors not directly associated with the code developed
for LSDB. By counting as failures only those runs in which the
cause of the failure resided in the program proper, we generated
the program failure ratio.

Typical measures obtained in the study are depicted in
Figure 1. The solid line represents the monthly failure ratios
for the entire LSDB software as reported from March 1976 through
January 1977. The dashed line is the program failure ratio as
determined above for the same reporting period.

While the plots in Figure 1l seem to depict a "noisy" process
it appears to be possible to make some observations regarding the
behavior of the software reliability which, in turn, lead to
conclusions regarding the utility of the measures employed. For
example, in no month did the total failure ratio exceed 0.26 nor
did it drop below 0.13. Therefore, it appears to be a reasonably
stable and meaningful measure of the software development. Both
the total failure ratio and the program failure ratio exhibit a
general trend with time. By the use of linear regression, trend
lines can be generated for the entire development period and/or
for the most recent, say six-month intervals, to provide
indicators of progress (or a lack ﬁhereof). The generation and

use of these trend lines is discussed in Section 4. It should

11

Figure 1. Total and Program Failure Ratios for All

12

also be noted that there is a large difference between the total
failure ratio and the program failure ratio. This is discussed
in Section 6; in Section 5 it is shown that the ratio of total-
to-program failures is nearly uniform among the modules of LSDB.
Finally, it was observed that the peaking of the failure ratios,
discernible in August and October 1976 and January 1977,
coincides with the time that major design reviews of the programs
were taking place; it is plausible to believe that these
significant deviations in the central tendency of the failure
data are in some way correlated with these program events.

The use of the failure ratio, i.e., the ratio of failed runs
to total runs in a given period of time, as a measure of software
reliability is one of the innovations introduced in this study. ‘
Previous investigators had simply reported the number of failures
per calendar interval. To the extent that the number of runs per
month (or other interval) is not uniform, these measures will
yield different results. For most purposes the measure that will
be preferred is the one that has the smallest variability. In
this connection, a comparison of the total failure experience on
LSDB when reported by failure ratio and by failures per month is
presented in Figure 2. The more stable measure of reliability
furnished by the failure ratio is quite obvious. It should also-
be noted that this plot represents the entire program activity on

LSDB which, because it was constrained by manpower and computer

N g . .

o [FOTAL FAILURES x 0.01
a FOTALFAILURE[RATIO, -
{OVERALL RATIO: 17804
0T 1 T T T T T T 1

i

Figure 2. Total Failures and Total Failure Ratios for All

- 14

"’3)@ A
Ees ‘.4,

i

time avallabllrbyg}thQGQ dﬂ VNQ -gniform number of runs
1R RCN &s& g &&#g

per month than the act1v1ty on an 1nd1v1

" -rqa? g}‘“‘i? Pt

%agfégégﬁei, its use seems well

ugi module. Because

.‘.”r x
failure ratio y1eld's"”qt

aEmQJE%S
justified for use in future software reliability measurements.
In total this study has established that a meaningful
quantitative measure of software reliability can be generated,
and data collection and data analysis methods to support this
measurement are available. The consistency of the failure ratio
data from month to month shows that quantity to be useful for
measurement and estimation, at least within the development
phase. The consistency observed here also makes it desirable to
use the failure ratio as a possible predictor of software
reliability in later stages of the life cycle as well. Specific

applications of the results of the study are discussed in

Section 7.

.15

Page
Intentionally
 Left Blank

III. THE COMPUTER PROGRAM AND ITS ENVIRONMENT

The host proiect for the SoffWate Reliability Measurement
Study is the Metric Integrated;Processing System (MIPS) that is
being developed for the U. S. Air Force Space and Missile Test
and Evaluation Center (SAMTEC) at Vandenberg Air Force Base,
California. MIPS provides the primary metric (i.e., positional)
data processing for test or trajectory measurement activities on
missiles, aircraft, and satellites. The constituents of MIPS are
the control segment, the real-time segment, and the non-real~time

segment. The system specification2

requires a modular
program structure, hierarchical program design, and execution
order programming. In addition to these overall requirements it
was decided to demonstrate the value of a highly disciplined
programming environment on portions of the non-real~time segment
including the program from which the data for this study were
obtained. The additional requirements imposed on the software in
this study included the following:

a- Top—-down development

b. Structured code

C. Program support library

d. Chief programmer teams

e.- Structured walk-throughs.
The effort of implementing and evaluating these techniques is

termed ASTROS (Advanced Systematic Techniques for Reliable

Operational Software). Further background on ASTROS is presented

17

in a technical paper by J. A. Salazar and R. R. Hall. Because
its initial distribution was quite limited it is reproduced here
as Appendix B. The data accumulated for the evaluation phase of
ASTROS provided a unigque opportunity to conduct software
reliability measurement during program development.

The measurements reported here were taken on the Launch
Support Data Base (LSDB), a major component of the non-real-time
segment of MIPS. The LSDB Program is broken down into five major
components (which will be referred to as "modules") and
approximately 40 independent subroutines (which will be referred
to as "utilities"). LSDB includes data base management functions
and scientific calculations, e.g, ﬁo translate local line-of~-
sight data into a common earth~centered coordinate system. The
entire LSDB Program comprises approximately 25,000 lines of
source code, of which the modules account for about 18,000.
Approximately 40 percent of the module code consists of comments.
Most of the LSDB code was written in structured FORTRAN,'
translated into ANSI FORTRAN by means of the S—FORTRAN
prgcompiler, and then compiled for use on an IBM 360/65 computer.
Small segments were written in the IBM assembly language (BAL).
Originally, five programmers were assigned to LSDB but after a

few months this was reduced to a staff of three plus a

programmer-librarian. The design was started in September 1975.

18

The coding period for which measurements are presented here
comprised 11 months from March 1976 through January 1977.

It is intended to develop another non-~real~time component of
MIPS in a non-structured programming environment during 1977.
This should permit comparisons of reliability measurements and
related development data between the two software components.

It is at present not known what factors in the programming
and computer system environment affect software reliability. For
this reason it was decided that a listing of requirements levied
against the software product (here LSDB) as well as a description
of the general environment should be a part of the record of this
Software Reliabiiity Measurement Study. Forms for reporting this
background information had been developed earlier3. The |
forms utilized for reporting background data on LSDB are listed
in Table 1; samples of the forms are reproduced in Appendix A.
The primary use of this information is future comparative
evaluation of the reliability measurements on LSDB with those
from other sources. It is hoped that quantitative information
about the effects of programming,'test, and management techniques

can be gained from such comparisons.

19

TABLE 1

BACKGROUND DATA REPORTING FORMS

General Project Summary

Management Methodology Summary

Design and Processor Summary

Personnel Profiles

Testing Summary (to be filled out during project test)
HIPO Charts (Hierarchy plus Input, Processing, Output)

20

Iv. MEASUREMENTS AND TIME TRENDS

Data for this study was provided by the programming team by
means of reports and data tapes.

Two classes of reports were utilized: those providing
background data were mentioned in the preceding section; the
other class of reports provide data on each run. The run report
forms are illustrated in Figures 3 and 4. The run analysis form
(Figure 3) was prepared for every run, while the failure analysis
form was prepared only for those runs that were not successful.
The run reports were prepared daily by the program librarian.

The determination that a run had failed was made by the
development group. The data obtained from the run reports were
entered into a computer data base, and statistical summaries and
plots were generated by a series of APL programs. The principal
data tapes utilized were those from the System Management
Function (SMF) of the IBM computer operating system. Since the
SMF tapes duplicated most of the information on the run analysis
form, the tapes were used primarily as a check on the
completeness of the data collection effort(l). It was found that

data collection was carried out very conscientiously.

(1) For future applications of software reliability measurement it
may be possible to eliminate the run analysis form and derive
the data from a system tape such as SMF.

21

SYSTEM DATE

COMPUTER PROGRAM RUN ANALYSIS REPORT
Computer Program Component 1D

Run Date: Day Mon Yr Hr

Successful Run?

CPU Time: _ Min S Sec

Category of Work:
a. Program Development

b. Program Modification:
(1) Implementation of Additional Requirement
(2) Implemehtation of Hardware Change.
(3) Memory/Time Optimization Enhancement

(4) Error Correction
(5) Design Modification
c. Program Conversion
d. Other
CPCi/CPC Status
a. CPC Test and Eval [] c. Full Integ. Test
b. Partial Integ. Test [J d. Production Program
e. Other
Program Activity
a. Compilation [J c¢. Run with no compile

b. Compile and run [l d. Other

Number of Source Statements Changed/Deleted Inserted

-

t]
t]
tJ
L]
L]
CJ
L]

L]
tJ
tJ

tJ
L]

CJ
L]
L]

a. None (] e. 31-40 (] i. 101-150
b. 1-10 [J f. 41-50 [J js 151-200
c. 11-20 3 g. 51-75 [] k. Over 200
d. 21-30 [] h. 76-100 ([J
Contact
; Fﬁgure 3a

L 22

e -

COMPUTER PROGRAM RUN ANALYSIS REPORT
INSTRUCTIONS

To be filled out by programming librarian or responsible programmer
after each computer run. If the run was unsucessful (SYNTAX errors,
abort, calculation error, loop, ete.), the supplemental form
COMPUTER PROGRAM FAILURE ANALYSIS REPORT should also be complete.

This form will yield error statistic data and computer run time data.

Use program mnemonic.

This time is start time of computer execution from the computer
printout.

If answer is no, complete COMPUTER PROGRAM FAILURE ANALYSIS REPORT.

This can be gotten from the computer printout.
Check the appropriate box.
Check the appropriate box.
Check the appropriate box.

Check the appropriate box.

lF&gure 3b

23

SYSTEM

COMPUTER PROGRAM FAILURE ANALYSIS REPORT

1. Computer Program Component ID

2. Run Date: __Day ______Mon
3. Severity of Failure
A. Caused Complete System to Crash
B Caused A Dependent Job to Fail
-~ C. Local Job Failure Only
D Real Time Failure
E Other

DATE

4. Error Categoery

.T.O"ﬁm.UOE:U>

ot

S

Computational Error
Logic Error

Data Input Error

Data Handling Error
Data Output Error
Interface Error

Array Processing Error
Data Base Error
Operation Error
Program Execution Error
Documentation Error

Other

Figurre 4a

24

Yr

]
tJ
L]
C3

0]
CJ
0]
L]
L]
L]
]
L]
L]
L]
tJ
tJ

Count

Contact

COMPUTER PROGRAM FAILURE ANALYSIS REPORT
- INSTRUCTIONS

To be filled out by the respons’l.ble developer for each wnsuccessful mm. The
failure tnformation should be available on the program printout or from the
corputer operator. The error data can be derived from an analysis of the
program output. (It is possible that a fa'LZm'e can be caused by more than one
error, list them all).

Use program mmemonic.

‘This time is start time of computer execution from the computer printout.

Check box which most nearly describes-the failure md1cat1on. If other is
checked, briefly descnbe failure.

The count under the error category means number of errors not number of erroneous
statements. .
A. Examples of COMPUTATIONAL ERRORS include: (1) Incorrect operand in
equation, (2) Incorrect use of parenthesis, (3) Sign convention error
(4) Units or data conversion error, (5) Computation produces an over/under
flow, (6) Incorrect equation used, (7) Precision lost due to mixed mode,
{8) Missing computations, (9) Rotmding or truncation error and loop.

B. Examples of LOGIC ERRORS include: (1) Incorrect operand in logical expres-
sion (2} Logic activities out of sequence, (3) Wrong variable being
checked, (4) Missing logic or condition tests, (5) Too many/too few state-
ments in loop, (6) Loop 1terated incorrect number of times (including
endless loop).

C. Examples of DATA INPUT ERRORS include: " (1) Invalid imput read from correct
data file, (Z) Input read from incorrect data file, (3) Incorrect input
format, (4) Incorrect format statement referenced, (5) EOF encountered
prematurely, (6) EOF missing. .

D. Examples of DATA HANDLING ERRORS include: (1) Data file not rewound before
reading, (2) Data initialization not done, (3) Data initialization done
improperly, (4) Variable used as a flag or index not set properly,

(5) Variable referred to by wrong name, (6) Variable type is incorrect,
(7) Data packing/umpacking error, (8) Sort error, (9) Subscripting error.

E. Examples of DATA OUTPUT ERRORS include: (1) Data written on wrong file,
-(2) Data written using wrong format statement, (3) Data written in the
wrong format, (4) Data written with wrong carriage control, (5) Incomplete
or missing output (6) Cutput field size to small, @) Lme count and
page eject problems.

F. Examples of INTERFACE ERRORS include: (1) Wrong subroutine called,
(2) Call to subroutine made in wrong place, (3) Subroutine arguments not
consistent in type, units, order, etc. (4) Subroutine called is nonexistent.

G. Examples of ARRAY PROCESSING ERRORS include: (1) Array not properly
dimensioned, (2) Array referenced out of bounds, (3) Array being referenced
at incorrect location, (4) Array pointers not mcremente_d properly.

H. Examples of DATA BASE ERRORS include: (1) Data should have been initial-
ized in data base put wasn't, (2) Data initialized to incorrect value in
data base, (3) Data base units are incorrect.

1. Exanples of OPERATION ERRROS include: (1) Operating system error,
(2) Hardware error, (3) Operator error, (4) Test execution error.

J. Examples of PROGRAM EXECUTION ERRORS include: (1) Time limit exceeded,
(2) Core storage 1imit exceeded, (5) Output lme limit exceeded,
(4) Compilation error.

X. Exarples of DOCUMENTATION ERRORS include: (1) User manual error, (2) Inter-
face spec error, (3) Design spec error, (4) Requ.lrements Spec error.

L. Briefly describe the error(s}.

Flgure 4b
25

The principal measurements derived from the data are the
failure ratio and the failure rate. The failure ratio is defined

as
U = F/N (1)

where F is the number of failures observed in N runs. The

failure rate is defined as
u = F/t (2)

where F is the number of failures observed during t seconds of
CPU time. These failure metrics, and particularly their

complement, the reliability metrics,
R = 1~-0 = §S/N (3)
where S stands for the number of successes
and MTBF = t/F (4)

are analogous to commonly used hardware reliability expressions.
The relation of these metrics to those used by other researchers
in software relability is described in Ref. 4.

During £he development phase the dominant computer usage is
frequently for compilation and related activities. Under these

circumstances, computer time used during a run is approximately

- 26

proportional to the length of the code submittedﬁ2). This
relationship has significant effects on the failure rate data
presented and will be commented on further below.

Failure of a computer run can be due to three major causes:
(1) hardware faults or errors by the computer operator, e.g., in
mounting the wrong tapes; (2) faulty interactions, specific to
that run, with the data base or with the operating system (e.g.,
caused by control cards); and (3) errors in the code itself. The
first category has been termed "Operation Error”, and, although
run analysis and failure analysis forms were completed for these
cases, they were not considered in the failure ratio or failure
rate measures (i.e., they affected neither numerator nor
denominator of these fractions). Failures due to (2) and (3) are
reported as "Total Failures", while the term "Program Failures"
pertains exclusively to those in the third category.

A typical graphical representation of these quantities has
already been presented in the overview (Figure 1). The central
tendency of total and program failure ratio has been commented on
there, and the constancy of these ratios over a period of time
has been interpreted as making them useful for reliability

measurement.

(2)During test and operation the CPU time is dominated by the
execute step. This is less directly bound .to length of code
because of time spent in loops, I/0, etc.

27

Another way of evaluating the plots of software failure
ratios is to compare them to equivalent plots for hardware. For
this purpose, reliability data on a guidance set were obtained,
and the failure ratio was defined as the number of sets failing
in a given month divided by the number of sets in the field
(approximately constant over the period). A comparison of such a
hardware failure ratio with the total software failure ratio for
LSDB is shown in Figure 5. A significant conclusion from this
figure is that the deviations about the average value are about
the same for both plots. The hardware failure data was reported
in a logistic planning document and had been used for predicting
the quantity of spares and number of repair crews réquired. This
suggests that the month~to-month variability of the software data
should not present a major obstacle to their serving for useful
reliability forecasting. Also, the similarity of the two failure
ratio plots permits one to speculate in a géneral way about
combining hardware and software failure ratios. (The two
specific plots shown here pertain to completely different
equipments and environments; it is not appropriate to combine
them.)

In addition to the similarities, the two plots in Figure 5
also exhibit a significant difference: the software failure
ratio shows a decreasing trend with time over the interval shown

whereas the long-term trend for the hardware failure ratio is a

28

Figure 5. Comparison of Hardware and Software Failure Ratios

29

constant independent of time. A decrease in the failure ratio is
of course what one expects to see as the software reliability is
improved during development.

Formal reporting of the trend with time is a potential tool
for demonstrating progress to management and contracting
agencies. For this reason, plots with trend lines (obtained by
linear regression) were developed as shown in Figure 6. Trends
for both the entire interval and just for the last six months
seemed desirable as measures of progress. To avoid overly
complex presentations, it was therefore decided to separate the
plots for total and program failure ratios. Note that the trend
lines in Figure 6, particularly the one for the last six months'
period, indeed show a desirable decrease in the failure ratio.

Below the plot is printed the 90-percent confidence interval
for the slope of the regression lines. This shows that there is
only five percent probability that the overall trend is less
negative than ~0.0069 (-0.0073 + 0.0004), or that the six-month
trend is less negative than ~-0.0110 (~0.0123 + 0.0013). The use
of the t-~distribution permits calculation of other confidence
intervals. E.g., there is only 0.5 percent probability that the
six-month slope is less negative than ~0.010. Either the point
estimate of the slope or an upper confidence limit may serve as a
useful management tool for control of reliability during software

development. Experience with several other development projects

30

O TOTAL FAILURERATIO
(OVERALL RATIO: ‘Wal]
O_LINEAR REGRESSION

o * LAST 6 MONTHS LINEAR REGRESSION.
(KL s B O S R

25—

0201

015

010~ | -

AT W3 I AAS 0N DT

"0 CONF, INT;: \

100 +(— 0004z
*CONF‘INT ‘

§§+£/— 003!

/.,

Figure 6. Total Failure Ratio for All

31

is required to establish suitable time periods for the regression
and the statistical limits that should be employed.

In evaluating the trend lines it must be kept in mind that
this is a top-down program development, in which modules are
constantly being fleshed out as they are being tested so that the
actual amount of code increases for a considerable time while
runs are being made. It is therefore not surprising to see a
more sharply decreasing trend for the last six months' period
when the overall size of the code has been reasonably stable.

Figures 1 and 6 have demonstrated the central tendency of
failure ratio measurements, deviations about the expected value
due to random events, and more pronounced deviations when the
project life cycle exposes the code to a higher stress level. It
has also been shown that, despite these deviations, a trend in
failure ratio can be clearly depicted by linear regression lines.

Failure ratio plots can also highlight unusual events that
affecf individual elements of the computer program as shown in
Figure 7. The utilities have already been introduced as a
collection of small subroutines within the LSDB Program. The
initial three months of coding showed a normal failure ratio
history, and after that the utilities seemed to be exceptionally
failure free through September. Runs continued to be made on

these subroutines during these months as shown in Figure 8.

32

- 0 PROGRAM FAILURE RATID
- [{OVERALL: .0378))

%

"o LINEAR REGRESSION
 LAST 6 MONTHS [N

T T T T T T T T T

oé’CONF?IN

1:/[.0041 +/— .0001]
* CONFINT

110120 +/— .000:

Figure 7. Program Failure Ratio for Utilities

33

ofTOTALRINS | |
O{CHANGES X 0.01 :

Figure 8. Total Runs and Total Changes for Utilities

- 34

Beginning in October 1976, Figure 7 shows a sharp increase in
the failure ratio, and fairly high failure ratios have persisted
through January 1977. As can be seen in Figure 8, the number of
changes increased above the previous level in the summer of 1976,
and a high level of program runs and change activity has
continued ever since. On inquiry to the developers it was found
that a major change in the utilities format was required by the
concurrent development of another MIPS segment that uses LSDB
output. Also, the addition of new coding during LSDB development
put additional stress on the utilities. Events of this nature
are, of course, not uncommon in any major software development.
The ability of the failure ratio plots to highlight the effects
of changes and other occurrences on reliability has considerable
potential as a management tool..
| That runs made early during the coding period involved fewer
instructions than those made after the module was completed(3)
can be seen by comparing plots of failure ratio and failure rate
for a given module. It will be recalled that failure rate is
based on a measure of computer time that is a function of the

length of the source code. Thus, the overall failure ratio trend

(3)Each module consists of a number of elements (50 to 100
statements long). Initially some of these elements were
"dummied" and then replaced by full code as the details were
defined.

35

line shown for the LDG module in Figure 9 would indicate that no
improvement in failure ratio has been observed for this module.
On the other hand, the failure rate plot in Figure 10 shows a
steady trend of improved software reliability throughout this
period. For the latest six months, both figures indicate that a
sizeable reduction in the failure experience has taken place.
Under conditions where the size of the code is expected to change
materially during development it is therefore concluded that
reliability measurement based on failure rate (where computer
time is dominated by compilation) may provide a more

representative index of reliability.

36

o PRUGRAM FAILURE HATIO

O |LINEAR REGRESSION T
* LLAST 6 MONTHS LINEAR REGRESSION,

e SLOMONTHS NCAP SEGTESS
N3

010}

005

0.0}

O/CONF, INT: [=.0001+/— .0006!
. .CONF INT; .01674/— .0019

Figure 9. Program Failure Ratio for LDG

37

© PROGRAM FAILURE RATE

- (OVERALL: .2914). |

‘O LINEAR REGRESSION :

* LAST 6 MONTHS LINEAR REGRESSION

T

. Figure 10.

Program Fgjilur e Rate for LDG

38

V. VARIATIONS BETWEEN MODULES

Failure ratios and failure rates for the major modules in
LSDB are summarized in Table 2. The mean and standard deviation
for the module values of these quantities are shown at the bottom
of the table. The current number of source statements and number
of runs accomplished to date for each module are also shown.

The first observation is that within each failure ratio
category there is a remarkable consistency. The highest failure
ratio in no case exceeds twice the value of the lowest failure
ratio for that column. (In hardware reliability tests for
different lots of a given device type it is not uncommon to see
two-to-one variations.)

At first glance it would appear that the program failure
ratio, yielding a smaller standard deviation, furnishes the most
cohesive measure. It must, however, be considered that the mean
for the program ratio is considerably lower than the mean for the
total failure ratio. Under these conditions a more meaningful
index of variabiiity is furnished by the ratio of standard
deviation to the mean, which is also called the coefficient of
variability. This is listed in the last row of the table. By
this criterion total failure ratio furnishes a slightly more
stable index. The ratio of program to total failures is also

fairly constant between modules except for the last module, BDT,

39

- 4311IqRTIRA JO JUSTOIIFROD

soInpoN usamjlag A P3IS

$9°0 S¥°0 0¢°0 22°0 61°0
LEO'O 91°0 g1°0 610°0 8¢€0°0
690°0 SE'0 9L°0 L80°0 020 aey
. LETT 92081
G21°0 €9°0 €9°0 00°1 €9°0 021°0 061°0 801 1261
060°0 €v°0 €€°0 LL™0 ev°o 9L0°0 8L1°0 Lzl 6L6T
$50°0 0% 0 0e’0 GL'0 0¥ "0 ¥L0°0 G8I°'0 08¢ gbee
9¢0°0 Lo 62°0 29°0 9% 0 180°0 PLTIO €8¢ Le8Y
Z¥0°0 2e’0 12°0 99°0 1€°0 Z280°0 g92°0 6€2 $629
juralels L/d 1goxrg 18307, IL/d 1goadg 1e3joL suny sjuralelq
0001 xad o1j3ey otyey Jo °*oN 92ano0g
oney 93ey sanjred o13ey Qinyreqg _ Jo °*ON
1req 1®30.L

AMVINNAS ALITIVITIEYE ATATOW YOLVIN

2dTdV.L

ueaN

1e30L
rag
dad
1aT
DA

081

dMpPON

40

for which program failures constitute a significantly higher
percentage. That ﬁon-program failures constitute the major
fraction of failures during development is an important finding
of this study that is commented on in Section 6.

The variability for total failure raée is about the same as
that for total failure ratio, as measured by the coefficient of
variability and also as can be determined from the total range of
the data. For program failure rate a considerably greater
variability exists (e.g., range is three to one), this being
largely attributable to the high program failure rate for BDT.
The ratio of program-to-total-failure rate is almost identical to
that for the failure ratios. This is at first surprising, since
many errors that cause failures only in the program category lead
to abort early in execution (e.g., data reference errors). It
must be remembered, however, that the predominant use of CPU time
is for compilation and that this step can be completed without
dependence on data-related control statements.

That failure rate normalizes for program size (compared to
failure ratio) can be seen particularly by the relative ranking
of the LSO module, the largest one in this group. It has the
highest total failure ratio and the second highest program
failure ratio, but ranks second lowest in total failure rate and
lowest in program failure rate. Also, the relative ranking of

BDP and LDI is reversed between failure ratios and failure rates,

‘41

as would be expected due to the larger number of statements in
LDI.

A direct normalization with respect to number of statements
for the total failure ratio is shown in the last column. The
variability in this column is greater than for the non-normalized
cases, as can be seen by both the coefficient of variability and
the total range (here greater than three to one). Also, one is
led to the surprising conclusion that normalized failure ratio
decreases with program size. A number of explanations can be
offered for this: the exposure to non-code-related efrors is the
same for each module regardless of size; the division of the
program into modules is governed by concepts of equal complexity
of computation and not by estimates of lines of code; or,
finally, that small modules receive less attention. None of
these hypotheses completely explains the observations.

The somewhat anomalous data for the BDT module in this
comparison led to inquiries of the developers for a possible
explanation. Lack of attention to this module or assignment of
it to inexperienced personnel were clearly ruled out by their
findings. It was, however, noted that this module contained the
most difficult algorithms, including many coordinate conversions,
and that accounted in their opinion for the observed

characteristics.

42

The listing in Table 2 shows that the larger modules had been
subjected to more runs than the small ones, and it was suspected
that this might introduce a bias in lowering the failure ratio
and failure rate of the large modules. For this reason, the
summary of results for exactly 100 runs on each module was
prepared as shown in Table 3. This shows only very modest
changes in the failure ratio and slightly larger ones in the
failure rate from the overall data in Table 2. The total failure
ratio is seen to be only slightly higher for the large modules
than for the small ones, while program failure ratio seems to be
almost independent of module size. Failure rate, on either total
or program basis, also shows no clear trend that would indicate
that module size has a major eﬁfect. Further internal analysis
on LSDB (e.g., in quantifying module complexity) and studies of
the effect of module size from other development.environments

should be undertaken.

43

TABLE 3

DATA FOR THE FIRST 100 RUNS ON EACH MODULE

Failure Ratio Failure Rate

Module Total Program Total Program
LSO 0.28 0.08 1.03 0.29
LDG 0.28 0.08 1.39 0.40
LDI 0.18 0.08 0.76 | 0.34
BDP 0.20 0.09 0.88 0.39
BDT 0.19 0.12 1.00 0.63

VI. CAUSES OF FAILURES

A gross classification of causes of failures was made when
separate plots for total and program failures were presented
(e.g., in Figure 1). The primary reason for this segregation is
that failures due to the program itself would be expected to be
carried into the operational environment, while failures due to
improper setup of a data deck or improper use of job control
language affect only the immediate execution of the run then in
progress. This does not imply that the reliability of a software
product should be characterized solely by the program failure
ratio or program failure rate. Well~designed programs are easy
to set up (and thus cause few errors in job control) and are
robust with regard to at least some of the commonly encountered
difficulties in interacting with the data base. However, this
major division was fairly easy to make, and it shed light on some
of the processes that cause software failures. It is quite
obvious from Tables 2 and 3 that failures other than those in the
program itself caused most of the difficulties during this
development phase. This is in itself a significant conclusion
but one that does not come as a surprise to anyone familiar with
the development of scientific programs against a complex data
base. The programmer is trained to devote his efforts to the

control structure, algorithms, and logic of the problem, and

45

details of data setup and job control receive comparatively less
.attention. There is also, of course, the feeling that errors in
these latter categories can easily be remedied by resubmitting
the run. If reduction of failure frequency during the
development phase is to be accomplished, considerable educational
effort in this area is obviously required.

A more detailed breakdown by error categories obtained from
the failure analysis reports is shown in Tables 4, 5, and 6(4).
As originally entered on the failure analysis sheets, the "Other"
category was the largest one. More detailed examination showed
many of these errors to be due to either keypunch or Job Control
Language (JCL). When these wefe established as separate cases
(on the basis of explanations entered at the time the sheets were
filled out) a more uniform distribution of error classifications
emerged. As shown in Table 4, on an overall basis (for the
entire time period) logic errors were the single most significant
classification. This was followed by a fairly close grouping of
JCL, residual other, and keypunch errors. Data input and program
execution errors ranked further down, and all other categories

contributed only very minor amounts. Due to the early stage in

(4)Program errors comprise class codes A, B, F, G, and J in these
tables. The descriptions of the class codes on the tables are
necessarily brief. A complete explanation is provided on
Figure 4b.

46

610" oho* 600° ZET® L10° SE0°* LSO°
610° 020° 600° L00° 600° Z90° .
890° 020" TE0" HwI0° ZS0° 600° .
110° . 120 * 600° .
:oo. ® L] [] [] . []
L J L] m:o. - L) [] []
£60° 9k0° Z90° 6HO° S€0° STIT° TL0°
L] . [] - \lﬁot . []
IvE oqd 100 2J0 a3 377 07
Li6T 9L6T

gno*
L10°
heo*

600°
600°

10r

HoNNdXaA

JaHL0
NOTLVINIHNVOA
NOILNOAXA AVHIDOYd
SNOILVHALD

asvea vdava
ONISSAI04d AVdYY
JIOVIYAINT

LAdLno vIva
ONITaavH Viva
LOdNI VIVA

JID01T
TVNOILYINANOD

[]
<CDQQKQQ4Q>R:H

$3200 35970 wuuww

Loo* €90° GeEo*
S§s0° L10° Seo0°
L00° L10°* £S50°

Tho* 110° £ES0°

* T10°
¢ 300"

* Q0"

SL0* LI0™ £S0°

Tho°* 160°

IR 33¥ IR

77V 404 SSVIV d04¥3 X4 SOILVY FYNTIVd

v 274Vd4

6e0°
¢¢o”’
oeo*
¢10°
€00°
100°

T00°
g8oo*
110°
150°
€o0o0*

17783740

N
‘W
17
'Y
v L
VH
)
td
ty
ta
t0
id
4

Lo

SIS A W

47

810°
YA

¢80*”

810°
900°

VT
LLBY

0so°
0e0*
010°

Z60°
T10°
€¢0°

¢to°
660°

£20

080

110

any

9

L

T0r

HONNdAXAN

. Hd3HL0
NOILVZINIWNDOA
NOILNOAXA WYHDONd
SNOIIVYAdO

asvd vdva
ONISSA004d XVHYY
dOVAYALNT

LNdLN0 YIva
ONITANVH VLVa
INdNI VUVa

21901
TYNOILVENdNOD

L] e o o o
TFD(;QR‘J&:Q)&:H%MQEE

S8207 33V10 muwmm

gho* £S0° 0T10° SLo°

* 110° 160° S10° oho*
* ¢ho* * ST0° 0s0°

* T10° 190° ST0° 090

* 110° ¢ S10°
L] L] L) woo.
. . -. wDOc
* * TIT° 800" 090°

611" 120° 180° €S0°
* 110° geo- *

nr anr IVR qav Ivn
67

SATNAON 404 SSVIv ¥044YA X4 SOILVH AHNTIVd

S 478Vd :

9e0°
§¢0°
heo”
810°
hoo°
100°

100°
h10°
6S0°
§g0°

7193370

N
VH
v
vy
tr
vy
to
td
tq
ia
1o
tg
ty

CR< WK

NN OoOX

48

1e¢0°
T10°
eho’

AVF
LLET

0co*

ono*

* €8T 490"
600 . ’
670 " EBED”
mo.ﬂ. L L]
960° §€0° .
A0 200 d3%

SATLITILN

onv

SL61

9 a74V4

7

T0r

HONNAZ AN

dAHLO
NOTJLYINAWNIOA
NOTLNOAXA RVYDOHd
SNOILVEALO

asva vdava
ONISSAO04d XVyyY
JOVddALNI

LNddno viva
ONITANVH VdiVa
LANT VIVA

aI901
TVNOILVINdNOY

'IQJQ.;Q&JQ;QQH‘}NQEQ

53007 $3VTT wumww

: * hgo® 982"
Sh0o* h90° heo* .
* T20° neo*
* T20° .
. * gno°
120" 8kO"
RN? IR gdv GvR

d04 SSVTIV 40443 X4 SOILVY F4NTIVd

\

Sho*
hi0*
heo®

heo*
h00*

Ge0°*

TIV32A0

tN
W
7
'Y
e
‘H
to
td
)
1a
to
tg
vy

CRII<<hhyn

IS W

49

the life cycle when these data were taken, interface errors and
documentation errors were not encountered at all. Distribution
of the errors over the ll-month interval showed only minor
trends, most noticeably in that input errors ceased to be
encountered after the first three months. Among the major error
types, however, the relative standing remained almost unchanged
throughout the development period. Comparison of Table 5 and 6
also shows only minor differences between the modules and the
utilities. JCL errors were encountered in greater frequency
among the latter, which is not surprising since the utilities
interact more closely with the overall control structure of the
computer system.

For some error categories, a comparison of relative

5 could be

frequency with errors found in an earlier study
made. For this purpose the data input and data output categories
were combined into an I/0 error classification, interface and
execution errors were combined into a single category, and data
base and global variable errors (the latter reported only in the

comparison study) were also combined. The resulting relative

frequency of errors is shown in Table 7(5). The columns headed

(5)The relative frequencies are computed for only those errors
for which comparable classifications could be established.
Some LSDB and some TRW errors were not considered in computing
the percentages. '

50

TRW2, TRW3, and TRW4 relate respectively to Projects 2, 3, and 4
reported in Ref. 5. 1In all cases, logic errors comprised the

. f?% o ¥ : . .
highest percentage, altho@g,§§?§§§ eems to be exceptionally high

for the LSDB popul;ggogwa %t?%§ other ; the scale,
e
computational errors wef@ftﬁé aéé‘%;%% 3nt or second least

significant in all ca@éé* ﬁﬁ%féf SPaE o?clu31on is that the
d&" &é; ﬁmﬁii-ﬂ
relative frequency of errors encountered during this study is

roughly comparable with that found in earlier experience.

TABLE 7

RELATIVE FREQUENCY OF ERRORS (in percent)

Source
Error Category LSDB TRW2 TRW3 TRW4
Computational 4.15 17.23 11.49 2.37
Logic ' 66.33 27.23 30.51 47.46
I/0 Error 10.68 16.60 23.41 12.2034
Interface/Exegution 15.58 20.11 20.22 25.76
Database/Global Vars 3.27 18.83 14.36 12.20

51

| Page
Intentionally
Left Blank -

VII. FINDINGS AND POTENTIAL APPLICATIONS

Significant findings of this study are that software
reliability measurement. during the development phase is possible,
that the forms-uﬁilizéd{here'captured significant data, and that
they could be conscientiously filled out by the development
personneél. dfzconsiderable immediate interest is the stability
of the failure igtio énd rate quantities, both as a function of
time and between modules. This implies promise for use of these
quantities in estimation and prediction of software reliability
in the operational phase.

The setting up of a computer data base for accumulating the
software measurement data and the summary routines generated as
part of that effort provided great flekibility in data
presentation, and the resulting plots illustrate the significant
processes at work. The inclusion of trend lines, based on linear
regression, further helped in emphasizing the essential
information content of the data base. The use of moving trend
lines, covering say the most recent three to six months data, as
a manhagement reéorting tool seems to have obvious promise.

The fact that almost two-thirds of the failures reported
were not due to errors in the coding proper is an important
finding of this study. It leads one to believe that more

education in the mechanics of run setups, data referencing, and

4;53

other interfacing with the computer system would be very
desirable in minimizing errors during the development phase,
speeding up the development process, and increasing programmer
productivity.

As the month-to-month variation in failure ratios and
failure rates indicate, software development is not a completely
deterministic process. Random factors and not~so-random factors
can cause appreciable deviations from the smooth convergence'to a
zero-failure~rate situation.

These findings suggest that software reliability measurement
as described here may produce data for the following
applications:

1. For the Line Management the failure ratio or failure
rate may identify reliability problems that may reside in program
modulgs or in organizational units or individuals. The trend
lines described in Section 4 of this report may be particularly
useful for this purpose. The analysis of error types may
identify the critical program development phase (analysis,
design, coding, etc.).

2. For the Project Manager, experience with software
reliability measurement over a number of projects can guide cost
and schedule allocation between various steps of the development
process, particularly between analysis and test. Such

measurements may also be significant in evaluating whether budget

54

or schedule constraints w@m@the attainment of a given
"&w il

reliability goal for the computlng function. Failure rate

L a—g
measurements may: pef pant u“l g%é

»ﬁ%g@g%%séin hardware/software

tradeoffs. vp Ay oa ft EF .
,r 5‘.‘: L l iﬁ:‘hﬁf ";) gi iz
3. For functional mana gement T%H”’dlrector of software

development or an equivalent staff function), reliability
measurement can be used for the evaluation of development tools
and procedures. In test of critical software cost can be
staggering, and software reliability measurement is expected to
be particularly useful in identifying good test practices and
tools so as to reduce these costs. It may even help with that
most baffling of all questions: when to stop testing. Also,
consistent implementation of software reliability measurement for
several projects should yield a reliability growth model that
permits early indication whether reliability goals will be met.
4. For regulatory agencies failure rate measurements may
be a key element in determining that safety or availability
criteria have been met. 1In mosts cases the criteria will be
aimed at the computing function as a whole (or at a higher
system) rather than at software. The compatibility of the
software failure rate with conventional hardware reliability

indices will be particularly useful.

55

Page
Intentionally
Left Blank

VIII. WHERE DO WE GO FROM HERE?

The valuable baseline that has beén established on the LSDB
Program during the development phase makes it very desirable to
continue the process of reliability measurement on the LSDB
program into the operational test and user phases. The absolute
level of failure ratios and failure rates that were seen during
the development can be translated into meaningful quantities only
if they are related to similar measures in the actual usage
environment. It is also proposed to accumulate similar
measurements on another non-real-time program that will be
developed under MIPS.in a non-structured programming environment.
Although no two programs are exactly alike, a comparison would
obviously furnish some insight into the value of the structured
program techniques. It is further intended by use of a much
simplified data collection technique, relying primarily on data
accumulated in the operating system, to conduct software
reliability measurement on a major operational ground computer
system supporting a NASA spacecraft.

All told the data recorded here, together with what is
expected tovbe learned from the scheduled activities in the near
future, form a good basis for performing software reliability
measurement during the development of critical programs both as a

tool for the management process and as a forecasting device for

°

57

the operational reliability of the resulting systems. We also
hope to have accumulated a data base here that can be used as a

starting point for further research.

58

REFERENCES

M. J. Merritt, et al., Characteristics of Software Quality,"

Report 25201-6001~RU~00, TRW Systems, Redondo Beach, CA

(December 1973).

MIPS (Metric Integrated Processing System) Performance and

Design Requirements, System Segment Specification, MIPS-

1023*3117—C6, Data Processing Directorate, Federal Electric
Corporation, Vandenberg Air Force Base, CA, Contract No.
F04701-72-C~0203 (29 November 1976) .

J. P. Johnson, Software Reliability Measurement Study,

SAMSO-TR~75-279, Aerospace Corporation, El Segundo, CA (8
December 1975).

H. Hecht, Measurement, Estimation, and Prediction of

Software Reliability, NASA CR~145135, National Aeronautics

and Space Administration, Washington, DC (January 1977).

Also in Software Engineering Techniques, Infotech

International Ltd., Maindenhead, Berkshire, England, (1977),
Vol. 2, p. 209-~-244.

T. A. Thayer, et al., Software Reliability Study, Final

Technical Report, 76-2260.1.9-5, TRW Defense and Space

Systems Group, One Space Park, Redondo Beach, CA, Contract

No. F30602-74~-C~-0036 (19 March 1976).

59

APPENDIX A

BACKGROUND DATA FORMS

One unique feature of this Software Reliability Measurement
Study is the great amount of information collected which
describes the environment under which the Launch Support Data
Base (LSDB) software is being developed. This background data is
of particular value for future comparisons of the reliability
parameters obtained here with those from other sources. The
background data is contained in five report forms: the General
Project Summary, the Management Methodology Summary, the Design
and Processor Summary, the Programmer/Systems Analyst
‘Questionnaire, and the System Development Log.

The General Project Summary (Figure A~1l) provides an
overview of the LSDB software development efforts. LSDB is a
level~-of~effort contract providing non~-real-time software (part
of Prelaunch) for Project MIPS. It is being developed on an IBM
360/65 computer with the following configuration: 768K bytes of
memory and 2 million bytes of Large Capacity Storage (LCS).

The,function of LSDB is to prepare and update the parameters
required to support missile and spacecraft launches at SAMTEC.
The total development time for LSDB is about 21 months (64 man-
months), with a scheduled completion date of July 1977.

Following the July date (completion of Development Test and
Engineering) the LSDB software will be subjected to configuration
audits (functional and physical) and then integrated with the

MIPS Missile Flight Control software through December 1977. On

T uwioj Ino SuTIII4 Uu0SIad

§anoy 09¢ ourt], 193ndwo) Fo Junouwy Te3ol 9IBUTISY

suttuwrelsold $9 ‘sisAjeue j udrsep § 1593 § ‘jioddns 9] ‘Jwdw 9] SYIUCK/UBW JO JSqUMy TEIO] dJEUTISY

3dejz (x9jutid) s3ioder § syeurod IndinQ JUSISIITQ JO JOQUNN OIBUTISH

S911J MSIP Sseq e3ep 61 sjeurod Indu] JuSISFFTQ JO JOQUNN IBWIISH:

(sFensue] Aquissse) rivd 0001 + NVYLYOA 000% SUOTIONIISU] JO JIoqUNy TeIOL SIBUTISH

slenuew 19sn oG ‘is93 0g ‘sdoeds ool ‘sibex gor uoTIBIUSUNOOQ FO SoSeqd JO JoqumN 93eWTlSy

Amvsﬁs‘oyn_smv SINd §2 +§ SOTNPOW JO Joquny JO S3euwIlSy

3s9) 7 ‘Furwwuedsoad ¢ ‘sisAjeue uglsop | ‘jioddns | ‘JAedeBUB | Teuuosag uum.mo.um JO aaqunN mumsﬁ.wmm

(poyeurasg 10 Ten3dy) 3S0) TeBIOL

SUIUOUX 19 uoTleINg 329l01g

LL/L ayeq pug 309foxg pajeurrisy SL/01 a3eqg 3xe3s 3defoxg:

*(saig) weishs Aerdstp uonyewioyur dn-3deq syj pue SJIN 192{o1d jo (SLu)

judWISes aWIli-[eal 8yl Aq papoasu sisjswrered [{e sejepdn pue soiedeld gUgr] We3sis [euoleiado UE JO

jaed se senbruyse) SurwumuesSord psanionays Juisn padojaasp Suraq st 11 "SI 3109foxg jo (L YUN) juswilas

9wIt]-1ea1-uou ayj Iapun 1DJD ®© 81 (gAST) uonyeredsrd aseq ejep jioddns younery UOTIdTIdsag 3ooflorg

yound pied ‘iopess pied ‘sTygn

"8NSTp "sade) “SDTT §93Aq UOI{IW 7 Arowswr 2149 389, G9/09¢ WHI (s)uelsAs tonduo) 1981e]

3I0JJH JO 19437 - QL0 1590bay SI0M) 3oe13uo) Jo adAy

9L/12/1 dINMd . AIVWANS JDFM0Yd TVYENED

gasT WAISAS®

e,

U
T e T A

27 e lnf

Figure A-1

A-2

1 January 1978 the LSDB software is scheduled to become
operational.

A total of six full-time personnel were involved in the LSDB
development when the report forms were completed, but this was
subsequently reduced to four. LSDB consists of five modules (6)
(LDG, LDI, LSD, BDP, and BDT) and was originally estimated to
require 4000 lines of FORTRAN code and 1000 lines of assembler
code. About 360 hours of computer time have been estimated to
complete the job. The General Project Summary is supplemented by
the Program Schedule (Figure A~2).

The Management Methodology Summary (Figure A-3) describes
the rules under which the development must be done and the
outputs from the project. The development effort is being done
in compliance with MIL~-STD-483 (Configuration Management
Practices for Systeﬁs, Equipment, Munitions, and Computer
Programs) and modified by the Implementation Plan for Advanced
Programming Techniques on the MIPS Project (TD-75-1392). This
modification has been included to provide structured programming
techniques (Top-Down Design, Chief Programmer, Librarian, Top-
Down Test, HIPO, Structured Code, Structured Walk-Through) to be
used extensively through the LSDB development. The Preliminary
Design Review (PDR) of the software was scheduled for June 1976,

with the Critical Design Review (CDR) being September 1976.

(6) There were originally six modules, but BDT and BDR were
combined into BDT.

L N *

Yoy

o .Fm -

anpaysg weifoxd "7-v

st ’ TITT1TTTH Y i s¢
(21 (13
141 [4
TE s
It 133
ot os
[1] 6T
o 8z
L . LT
[14 92
i 14 1 k4
1 24 : | X4
T 7T NN Ot XEAd SIINNIW VId [ez
Tz T NN L1 TAEX } Vod |zz
e IL R T L1 HEAQ LINIWNI00 NOTLd14IS30 NOISY3A |1z
ot I 71T R L1 CtAU NOTIVIT3ITI3dS 1IIMUUYd Joz
o I W L1 4718 TONNYR YIS a1
o1 [N9 gt xd VUNIIVY VId et
T IL W H¢ EI4\Y SINTW VI3 [
s [T NAT 8 WZAQ V33 (9
%1 I7 Wt | 8ZAD 190439 IS31 3310 |av
Vi I1 9dv 5¢ reka VTYIIVA/VANTOV VI3 [+s
T ETLEIR TAKQ NOT1VITd1193) ONINIVYL |es
Tl L1 9VW 6T HARD $34YN030048d 1531 3310 |z
T L1 9VH 7 TAND TVANYW ¥3SN LIVEAa |1y
o 17 933 5¢ BAAD SA1V ONINIVYL Jou
¢ L5 EERES MAAQ NV1d ONINIVHL [

W 9L d35 &1 3XAQ SILONIW ¥aJ |

¢ 97 9nv [T 3IXAQ (NYHINTIYM 43¥NLINYLS) ¥ad |«

? 9Z 5y L(aXAd VI1Y31YW/VONIOY HaD |

' 9 AT 61 maal SILNNIW ¥ad | s

v 9L NAT G¢ (HDITYR G38NLIINY1S) W9aq |»

i 9/ NAF 91 VMAQ TV1931VW/VONIOV ¥ad

z 9/ ¥dY 07 - LAAd RYTd ISI1T I91I0 |:

A 9/ YW 97 [AAD NOT11vVJ13193dS LINIWJO13AIA |1

3 31va 31va vielz[ifa|njo[s[v[r[r|w[viw|a]rfa[nle]s]v]r]rn]viw]alr] Eeimicssmesamnean 3
M NO1L31dWOI|NO | L3 10D Il & x5 9L &1 x> Sam N

2| vniov | a3tnaawos| ° 61 A4 Lo 22 9levas | i A ol |

0S7dIW SdiI W
oN Mxﬁ mo— Y BANQIHNDE 40 AdAL wW3LisAsans HIABWAN (3oefard) WBLEAS 3INAIHIOS WYAO0Ad

A-4

€-V @and1g

D1 wrod Ino SurTTd uosaad

Surasyley e3eq 10J SOINPad0Id PuB SOTITTIOE]

IDdD 9asT 9TqeIOATIS(Q 9IEMIFOS

26¢1-GL-A.L X9 pPoJIpow ¢8p-ALS-IIN PoIInbay spiepuels AIe3ITIN pue ‘syenuey ‘suorje[ndsy Jv

oND SOA Rl Pesn oND] SOA] peaInboy jusuwdeuey uorIeIN3TIUO)
oN[] seX Pesn oND SO R woﬁzcum uerd 3s9],

9L61 3daS (nIyP{{eM PaINIONIIS) YAD
T 9L6T eun[(MIUP{[esm peinidoniis) gdd m?coﬁmﬁmm\m,%
oN (] S9XK) dv 03 par1ddng j10dey 1BUTd (5)
oNO soL K] dv 03 pertddng . sainpeadolig 1501 ()
ON{] SeAE] dv o3 parrddng weld 1501 ()
ON[] S°AK] 4V o3 perrddng oadg jonpoad (7)

ONOQ SeiE] dv o3 pariddng oadg jusmdotased (1)

(109foxd SJTN ay3 uo

~ sanbruyda] FulWwielsold PadURAPY I10J Uled uomeiuawalduil) Z4¢I-62-dL POS[ST00]/9INpadodd Jusuedeury

9L/12¢/1 HIVU RIVANS 2O0TOJOHLIN INSNFOVNVA

. . . B : gdST WHISAS

sjuswaIInboy Io/pue suotied1yrdeds [ie Surpnyoul pejelsusy sitodsy 3ISTT

A-5

However, both dates were extended three to six months, and the
CDR was divided into five sections (one per module).

The output from LSDB consists of a Development
Specification, a Product Specification, a Test Plan, Test
Procedures, and a Final Report. -"All documents are a part of the
Contract Data Requirements List (CDRL).

The Design and Processor Summary (Figure A-4) primarily
provides information on the IBM 360/65 computer. The software is
being developed on the same computer that will be used
operationally. Development jobs are submitted in both over~the-
counter batch mode with a 24-hour turnaround time and by remote
terminal mode with a two-hour turnaround time. The operating
system being used is OS/MVT Version 21.7 with the optimized
FORTRAN H compiler and the Level F assembler. About 90 percent
' of the total code has been written in a High Order Language
(FORTRAN and S~FORTRAN), with the remainder in Assembler
Language. .

A separate Personnel Profile exists for each programmer/
analyst/librarian associated with LSDB development, and a sample
is shown in Figure A-5. A summary of all Personnel Profiles is
shown in Figure A-6. The typical programmer had eight years
programming and analysis experience, a college degree with two
years postgraduate training, has worked on similar projects, and
is familiar with a wide variety of programming languages.

The Librarian's function is to submit jobs for the users,
maintain statistics on the system, and generally to relieve the

programmers of many of the administrative tasks associated with

SYSTEM MIPS/LSDB DATE 28 Jun 76

DESIGN AND PROCESSOR SUMMARY

1. Target Camputer(s) 360/65
Target Computer Same as Development Computer Yes

2. Processing Environment

3. Configuration: On Line Batch X Remote Batch X

4. Operating Systems(s) Version 21.7 IBM OS

5. Compiler Version(s) H FORTRAN

6. Assembler(s) 1

7. Est., Percent: HOL 90 % ‘Assembler 10 %
8. Automated Software Tools Used:
S-FORTRAN
_Librarian - (Attach Vendors Users Manuals)

8. Design Standards

10. Programming Standards TD-15 (ASTROS Plan)

11. Programming Techniques Employed:

Top Down Design X HIPO X)
Chief Programmer X) ¢ “ructured Code X (mostly)
Librarian X - Structured Walk Thru X

Top Down Test X Other

12. List Existing Programs/CPC's to be Used MIPLIB subroutine

13. Est. Turn around Time (MRS): Batch 24 Remote Batch 2

Contact LG

Figure A-4

A-7

ID-75-1592-A
1 May 1977

TESTING SUMMARY /////
INSTRUCTIONS #

To be filled out by chzef programmer or member of independent

test group when project is ready for system test. Thie form
identifies testing and requirements documents. It also identifies
testing approach, tools, procedures, etc.

Reference all requirements and specification documents which were
the guidelines for system development.

Reference all test plans/procedures the system is being tested
against.

Briefly describe the overallitesting philosophy including debug,
computer program test, and integration.

Briefly describe or reference procedure documentation for verifying
coding standard adherence.

List formal audits and tentative dates.

Reference management procedures used as guideline fOr testing.

\
Reference quality assurance documents which describe Q- involve-
ment in testing. N

Estimate person-hours to be expended in testing, include programmers,
testers, QA, support and management.

SYSTEM LSDB DATE 21 Jan 76

) PERSONNEL PROFILE

1. Name or ID, JMM

2. Project Assignment (Job Title) Programmer

3. Education Level: HS 4 YRS College 6 YRS

Degree(s) BS - Computer Science
BS - Applied Mathematics

4, Special Computer Training Courses: MS - Computer Science
2. _Structure Design Date _ 1216 Jan 76
b. Date
c. Date

5. Target Language(s) S-FORTRAN, FORTRAN-G, BAL

6. Years of Experience as:
Operator/Technician Analyst =
Proérammer x Other

7. Years of experience on:

Target Computer(s) 5 Target Language 5

Operating System 5 Similar Projects 2

8. List Other Programming Languages ALGOL, BASIC, BOBOL. PL/IL

O

SNOBOL, TYDAC

9. List Other Camputers IBM 1620, 360/40, 360/65, 370, 7094,

NOVA 2000

Figure A-5

B3

vd

¥/

81

Sk

ST
SN

P/

Sk

1>

sd
¥/1

H

e @
sk

I G1
sk Z
sd vIEW

¥/1> %/1

D A

9-v 2ingtq

S sk

0

e
<

S uelIeIql]

SIN 28e1100 1L 1
€/1 ma

C| a

KA
>3

b3

e
bd

vd

€/e

(e8enBuer] Alquassy WHI) TVd ¢

Gl

61
€21
sd
g

d

AGVININNS JTIHA0Yd TINNOSYIEJ

NVILYOJL Z

NVdLd04d-S 1

sadenduer]

91qe(leA® JOU UOTJRULIOJU«

€21
SN
1ng

v

safen8ue]
I91j0 JO °*ON

s3oofoad xejruuts
U0 90uUdtIodxd SIX

Ioindurod jo81e]
uo 9ouatradxo sIx

isA1eue

I0 rswrwexgoxd

se 90UdlIodxa SIx
so8en8uery

s9018e(31s°Y31Y
uotjedidoniied gasT

UOTed Y TIUSP]

program development. In this instance, the librarian has not had
a programming or engineering background and has one year of
college.

The Testing Summary is shown in Figqure A-7. A significant
feature of the test philosophy is that at least three distinct
groups in the developing organization performed the tests over
the development cycle.

An example of a HIPO chart is reproduced in Figure A-8. It
shows the function of the major modules within LSDB. The BDR
module referred to in that fiqure was during the coding phase

combined with BDP.

A~10

SYSTEM _MIPS/LSDB DATE
TESTING SUMMARY

1. Requirements and Specification Documents MIPS LSDB Dev Spec

(MIPLSD-1364-3119) MIPS Non-Real-Time Segment Spec (MIPNRT-1264-3117)

2. Test Plans/Procedures MIPS, LSDB Test Plan (MIPLSD-1364-3706, Vol. I)

MIPS LSDB Test Procedures (MIPLSD-1364-3706, Vol. II)

3. Testing Philosophy (1) Structured Programming Team performs detail
Testing and debug prior to delivery to test group; (2) test group performs
preliminary informal DT&E testing per test procedures to validate CPC
and CPCI programs and test procedures; (3) program control formally
performs DT&E: (4) fully integrated testing is performed with other CAI.

4., Method Employed to Audit Coding Standard Adherence Implementation Plan

for Advanced Programming Techniques on the MIPS Project (TD-75-1392-A)

5. Formal Audits and Dates

A, FCA -8 Jun 77 Date
b.r<PCA - 17 Jun 77 Date
C. : Date

6. Intemal Management Proccdures for Control of Testing MIPS 1.SDB

Test Plan, MIPS LSDB Test Procedures

7. Quality Assurance Procedures _ Para. 4 to MIPS LSDB Dev Spec

Contact DCC

Figure A-T7

&~ W\

TD-75-1392-A
1 May 1977

TECHNOLOGY CRITIQUE .-
INSTRUCTIONS .~

A
P

_ /o
To be filled~out by all project personnel as they leave the
project or when the project is complete. This form will
provide a subjective evaluation of the technologies employed
by the people who actuaZZy used them

/
N /
Names are optlonal. R

. /

Person's a551gnment descrlptlon or job title, if meanlngful

/

List time a551gned to pmJect in months

o7
s

Check technlques/tools used on pro;)ect brlefly describe others.
Honest evaluatlon of ‘you feelmgs
Be candld help us define a workable pollcy

Once again be candid, let's make the training useful.

4259

~»n

MIPYRC

1.0 LSDB PREPARATION

.

/_——‘ ---—@__— LSDB ' MIPS
coNTROL | LNITIALIZATION DATA BASE
OPTHONS) Lo (o)

— 2.0
2.
ANALYST (::)—-- LSDB MIPS
INPUTS | GENERAT I ON DATA BASE
_— LDG (LbG)
3.0
3.
MFC @"— L508
Ceos :? SUMMARY Lsob
TAPE ouTPUT M
Y (LSO)4.0
L4
MFC LSDB
MIPS] REPORT
DATA
BASE
b,
@‘ = *®™1 BiDS LSDB
PREPARAT | ON)
—) (BDP) &
5.0
HIPS
52 DATA BASE
@- —2%l5ips LSDB (80P)
| TAPE D
— (80T)
6.0 BIPS
© LSDB
TAPE
6. C
@-——— BIPS LSDB :
. SUMMARY s
__::::? REPORT
) (BDR)7.0
BIPS LSDB
Al REPORTS
T\/

A-12

APPENDIX B

ASTROS
Advanbed Systematic Techniques -
o for -
Reliable Qperational Software:

Another Look

By
J. A. Salazar, SAMTEC
R. R. Hall, Federal Electric Corporétion

March 1977

Space and Missile Test Center
Vandenberg Air Force Base, California

ABSTRACT
The Advanced Systematic Techniques for Reliable Operational Software (ASTROS)
project is a joint Space and Missile Test Center (SAMTEC) and Rome Air
Development Center (RADC) effort to validate the claimed benefits from the

application of modern programming practices in an Air Force operational
environment. ‘ :

‘The ASTROS project was briefed to the Range Commander's Council in April
1976 at Patuxent, Md. by Lt. Col. Everett A. Lyons, III from a paper co-
authored by him and Mr. Robert R. Hall. At that time SAMTEC had just under-
taken the measurement of the target program, the Launch Support Data Base
(LSDB) configuration item, for this technology investigation.

This paper relates the progress of the ASTROS project in the last year.
Special emphasis is given on the management problems encountered so that
any agency which is contemplating a "structured programming” project can
take advantage of SAMTEC's experiences and recommendations.

~ ASTROS: Advanced Systematic Techniques for »
‘ ReTiable Operational Software: Another Look

1.0 /Introduction

The purpose of this paper is to detail the progress made in the joint SAMTEC-
RADC investigation into the applicability of modern programming practices.

A little background will be given into the beginning of the ASTROS project,
but the paper will focus upon the progress of the Launch Support Data Base
(LSDB) measurement activity. The emphasis will be in the management problems
encountered and what steps SAMTEC has taken to overcome them. It is hoped
that other organizations involved in structured programming activities (or
those about to become involved) can get some value from the SAMTEC experience.

There is a genuine need for actual and reliable statistics on the value of
structured programming techniques in an operational environment. A project
needs to be thoroughly documented so that the tools and techniques used are
understood. The quantities measured, their method of evaluation, and the
variables affecting the statistics must be described. Equally important is
a description of the "normal" operational environment-and the comparative
statistics gathered from its production. The management planning, involve-
ment, and support must be defined. The costs incurred in implementation,
procurement of software tools, training, continuing support and overhead to
existing operations must be recognized and documented.

We at SAMTEC are concerned with the rising costs and have been interested
in implementing advanced programming techniques in an effort to improve
programmer productivity and increase software reliability.

The Rome Air Development Center (RADC) shares our concern and also recog-
nizes the paucity of objective measurement data on the application of
‘Structured programming. At the confluence of these objectives the ASTROS
project was born. SAMTEC is implementing contemporary technology to selected
projects and objectively measuring them. Since the measurement is objective,
infeasibility is an acceptable outcome.

1.1 Purpose of ASTROS

The objective of the ASTROS project, simply stated, was to investigate and
validate the various structured programming concepts and tools in the SAMTEC
operational environment. This investigation has been done with the goal of
improving programmer productivity and developing more reliable software.
More precisely, ASTROS applied structured programming techniques to selected
programming projects in order to validate the hypothesis (generally accepted
throughout the industry) that these techniques will yield (1) lower cost per
line of code, (2) higher quality code (less errors), (3) more easily main-
tainable code, and (4) more realistic schedules. Initially, these investi-
gations have been confined to a single processor, IBM 360/65, and to a single
higher level language, FORTRAN. :

A secondary, but important, objective has been to provide RADC with product-
jvity measurements within the Air Force operational environment in order to
objectively evaluate the benefits derived in applying these techniques.
Also, we need to trade-off the extra costs for support and system overhead
needed to operate thh1n a structured env1ronment against any productivity
and reliability gains.

The objectives suggested certain methods of approach to best provide an
environment for objective evaluation of the data gathered in order to.pro-
vide validation of the above hypothesis. In short, "How do we prove
structured programm1ng works without stacking the deck?” and "How do we
measure without imposing distortion on the results by the measuring process?"
The basic approach was to keep the cards on the table, i.e. (1) declare
methodology, measurement controls, evaluation criteria, expectations, etc.
prior to gathering any measurements and (2) minimize non-contributiory
measur1ng _

To ach1eve the ob3ect1ves stated above, the ASTROS progect concentrated on
three areas: (1) investigation and validation of structured programmlng
tools and concepts, (2) management aspects of structured programmlng, and
(3) measurement.

2.0 Background.
“ A little departure here to acqua1nt the reader w1th a 11tt1e
background of the ASTROS prOJect

2.1 Beg1nn1ngs.

In December 1974, SAMTEC invited representatives from RADC,
the Air Staff, SAMSO and PMR; as well as members of all the software
development companies at the Western Test Range; to a conference at
Vandenberg AFB. The purpose of the conference was to acquaint the atten-
dees with modern programming practices, often given the generic term
“structured programming". After a day of lectures and presentations, the
attendees were split into working groups to devise an implementation
plan for applying these modern programming practices in the SAMTEC opera-
tional environment. The interim reports of these working groups were
lntegrated and compiled into an Implementation Plan approved and pub11shed
in February 1975. :

2.2 . Implementation Steps.

The Implementation. P1an deta11ed a series of phased steps
necessary in order to place SAMTEC into a stance to undertake the develop-
ment of a target project utilizing the modern programming practices and
to measure the results. It is certainly pleasing to report that each of
the steps was carried out on schedule. A brief description of each of
the steps is described below.

2.2.1 Formation of a Team.

: The Implementation Team was modeled after a Chief Programmer
Team. The Project Leader was the primary decision maker and reviewer of
the rest of the team's output. The Librarians served as a funnel for
all information flow into and out of the team. Selected technical
personnel were added to the team as their functions were required.

2.2.2 Set Up a Technology Library.

A specialized "structured programming" library was installed.
The primary purpose of this library was to provide the team with all
available technology so that they could become familiar with modern pro-
gramming practices and learn from other implementers experiences. A
secondary purpose was to provide a technology center for "state-of-the-
art" thinking in modern software‘engineering circles. As time has gone
oh the technology center has grown in importance and size. There are
over fifty books and over 500 magazine articles, technical reports, etc.
in the library. Requests for information are received from all over the
country. -

2.2.3 Define, Roles, Functions and Procédukeévfbr Inyolved Personnél.

-1t was important to SAMTEC that, prior to embarking upon a
development project, the roles of the personnel involyed would be defined.
The way the team would function, how'a structured programming team would
operate in'an unstructured environment, and what deviations and waivers
would be needed from established Military Standards were ‘all addressed.
Structured programming standards and conventions were established. The
duties of each of the team members was defined. The contents of the
Systems Development Library was detailed. A1l of this was done in
.genera; terms before the selection of a particular development project
was made. | - ~ S : ’

2.2.4 Selection of Support Software.

The ASTROS Implementation Plan identified the selection and

procurement of ‘a Program Support Library (PSL) as the pacing item in
‘the implementation scheme. [t also stated it was key to a chief program-
mer team operation. The IBM -370/65 computer and the FORTRAN Tanguage
were identified as the target computer and target language. The Applied
Data Research (ADR) LIBRARIAN was selected as the PSL with the most '
readily available functions on the IBM 360/65. Since FORTRAN was the
selected language a pre-compiler.was necessary in order to program using
the structured code constructs. A rigorous validation process yielded
Caine, Farber and Gordon's S~FORTRAN pre-compiler as the best available
at the time. Other automated tools such as program design language
~generators, code auditors, automated test case generators, code analyzers
and restructuring programs were all considered. It was decided that
no other tools would be necessary for this first investigation.

2.2.5 Definition of the Management Process.

A Structured Programming Life Cycle was devised in order to
show how a structured programming project could be implemented into .
the standard Military Program Life Cycle. The approach here was to show
an evolutionary, rather than revolutionary, process. The reviews and
audits were described. Special documentation necessary in a structured
environment was detailed. The “structured walk-through" procedures
were established. :

2.2.6 Definition of Measurement Forms and Procedures.

A great deal of energy went into deciding what to measure.
The tendency to count something just because it was countable was
strenuously avoided; we intended to minimize the impact of the measuring
process upon the developer. Also, great pains were taken to assure
the developers that we are measuring the technology and not the people.
How well this is believed will influence the objectivity and usefulness
of the data. , :

- This goa] of obtaining mean1ngfu1 quantat1t1ve data in order
to perform an objective analysis without impacting the software deyeloper's
schedules may be unrealistic.. First of all, the developers know they "
are being measured and the "Hawthorne effect“ cannot:be ignored. - Second,
much of the information required has to be.provided by. the developers.
In order to minimize the impact of the measurement process, a ‘large
part of the data being gathered has heen automat1ca€]y captured by

B placing "hooks" into the LIBRARIAN software and into.the IBM Accounting

Software. Also, manual forms have been devised; most of them are
completed on a "one shot" basis. "All forms are short and concise with
explicit instructions on the back. Although the forms have been designed
for this project, they could have applicability in other software
development activities.

are assigned to the project. The General’ Contract/Proaect Summary and
“the ‘Management Methodology Summary are filled out by the Project Lead/
Chief Programmer once at the start of the project. The Design and
Processor Summary and the Testing Summary are completed prior to the
Critical Design Review (CDR}, i.e. the Tast formal review before start
of coding. The Systems Development Log is a multi-purpose form completed
on an irregular basis whenever a significant event transpires which
could have an impact on design and/or schedule. It is also completed
when a document or software increment is delivered, when a review or
audit has taken place, or when a piece of software passes a testing
phase.. The Computer Program Run Analysis Report is filled out for each
job submittal. Most of the information on this form is available on the
program listing. If a run is unsuccessful, the Computer Program Failure
Analysis Report is completed. Much work went into generically cat-
egorizing the many possible errors to yield a workable set; error
examples are included on the back. As each person leaves the project,
either because it is complete, they have a new assignment, or they are
leaving; they are asked to comp]ete the Technology Critique. The
General Project Wrap-Up Report is filled out by the Proaect Lead/Chief

Programmer at the completion of the project.

A Weekly Module Report will be generated automatically from
the librarian software, the ADR LIBRARIAN. This report will keep track
of module size, number of updates, number of runs, etc. A unique
feature of this report, to be used as a means for management visibility
and control, is the reporting facility. The report can be generated
a) periodically (weekly) b} on demand or c) on exception.

2.2.7 Selection of Target Projects.

" The ASTROS Implementation Plan established the constraint on
the target proaect that all software produced had to be something that

would have to be developed anyway. This ruled out a pure experiment or
a parallel development. "We centered upon the MIPS (Metric Integrated -
Processing Systems) for candidates for measurement.and comparison. ' The
MIPS project holds appeal. for app]1cat1on of adyanced techniques for
such reasons as: A

L]. ' It is a large system being deve]oped'incrementa]ly'

2. The environment is defined and controlled (processor, -
system, data base report1ng structure etc)

3. It is well managed and h1gh]y visible

4. The IBM 36Q0/65 has more automated too]s available than
any other SAMTEC processor

5. The end-product is useful with a long projected life

6. A1l of the Non-Real Time Software is being developed using
- a common language, FORTRAN

7. Its increments are non-trival, i.e. complex algorithms,
large data bases and interfaces, and significant manpower
requirements (10-15 man-years per increment).

_ Three Non-Real Time Increments were selected. One, the Data
Analysis Processor (DAP), is being measured and developed using traditional
programm1ng techniques. Another, the Launch Support Data Base Generation
(LSDB) is being measured and developed using such advanced techniques as
top-down design, HIPO, structured code, program support library, chief
programmer teams, and structured walk-throughs. The third increment,
History Tape Generation (HTG), is being developed using the advanced
techniques but will not be measured.

2.2.8 Training .of Involved Personnel.

The ASTROS team defined six different training courses for
specialized application of the various structured programming techniques.
~Vandenberg personnel were provided the necessary training required in
- order to implement advanced programming techniques.

1. Overview.

This course was a genera] survey of what, why, who and how of
structured programming. Each of the tools and concepts, along
with the management approach of the ASTROS team, was briefly
highlighted. ThlS was a two hour presentation.

2.2.9

2. Structured De51gn

_This course included d1scuss1ons of top down deS1gn, Program
“Design Languages, HIPO, Threads and. top down test. The course

_augmented technical discussion with in-class problem solving -

using the team approach and structured walk throughs. This
couEse was a 40 h0ur course, taught 4 hours a day for two
weeks

3. Structured Codg.

The theory of structured constructs, their history, and
mathematical proofs were discussed briefly. The bulk of the
course was an instruction in the usage of Caine, Farber,
Gordon S-FORTRAN pre-compiler with emphasis on coding and
review of actual problems. This course was 20 hours in length,
taught 4 hours a day for one week :

4. ADR LIBRARIAN.

This course concentrated on the optional features of the ADR
LIBRARIAN and how to best utilize them. It included a discussion
and working example of use of the Systems Management Facilities
(SMF). This was a 20 hour course taught in 5-four sessions.

5. Measurement Reporting.

This course discussed the measurement reporting forms and
explain how to fill them out. Emphasis was given to the

error classifications and to the meanings of each classification.
Ways of automating the collection function by using the ADR
Librarian was discussed. This 4 hours, taught in two hour

segments with follow-up 0JT and monitoring during the develop-

mental phase.
6. Management of Structured Project.

This course addressed the systems management aspects of
structured programming. MIL-STD's were discussed as to their
applicability, deviations were defined. Measurement
reporting and management controls available in the ADR
LIBRARIAN were discussed. A structured programming life
cycle was presented and discussed. Chief programmer team
organization and structured walk throughs were h1gh]1ghted
This was a 20 hour course taught in 5-four sessions.

Exercise Concepts and Measure Results.

After the above activities were completed, SAMTEC was ready

to procede with the technology investigation. .A'joint SAMTEC/RADC

Memorandum of Agreement was signed in Fehruary.197% and the development
and the measurement of the.launch Support Data Base Generation (LSDB) -
Computer Program Configuration: Item (CPCI) was.initiated. It was at this
point that the ASTROS project was presented to.the Range Commanders
Council in April-1975.. Many interesting things have happened since, -
leading to some enlightening discoveries.. The story.of the last year
comprises the rest of this paper. = oo o

| 3.0 -LSDB Measurement Activity

The Launch Support Data Base CPCI has been continuously measured and monitored
since February 1976. The project is scheduled for completion in June 1977.
This paragraph will provide a brief description of the project, explain the
advanced programming techniques being applied to the project, detail what
measurements are being gathered, discuss the development progress and the
management problems encountered, and take a Took at the present status.

3.1 Description of the Project

The LSDB CPCI is a non-real time increment of the Metric Integrated Process-
ing System (MIPS). It is being developed on the IBM 360/65 using a Remote
Job Entry (RJE) terminal as the primary submittal technique and operates in
a batch mode. The program computes the data base parameters used by the
Missile Flight Control (MFC) CPCI in its real-time range safety calculations.
LSDB is comprised of six major Computer Programming Components (CPC's) each
with many sub-modules, subroutines and procedures. The error and producti-
vity measurements are being collected on the CPC level. There are four full
time members of the development team; the chief programmer, two programmers
and a programming librarian. The integration testing is being conducted by
‘an independent testing group within the MIPS organization.

3.2 Advanced Techniques Applied

Below is a short description of the advanced programming techniques being
applied by the LSDR development team. . These techniques and concepts include

. a top down development approach, structured code, Hierarchy plus Input-

Process-Output (HIPO), a Chief Programmer Team and Structured Walk-Throughs.
3.2.1 Top Down Development Approach '

Top-Down Design approach is used in the LSDB development. Each subsystem
is designed from the control sections down to the lowest level sub-
routine prior to the start of code. There is one HIPO per subsystem
which is expanded until the lowest level of detail is reached.

Top-Down test requires the highest level unit or units of a system or sub-
system to be coded and tested first. Since that unit will normally invoke
lTower level units, dummy code must be substituted temporarily for the lower
Tevel units. The required dummy units (program stubs) may be generalized,
prestored on disk, and included automatically by the linkage editor during
a test run (as in the case of a CALL sequence). Although the program stubs
do not normally perform any meaningful computations, they can output a
message for debugging purposes each time they are executed. Thus, it is
possible to exercise and check the processing paths in the highest level
unit before initiating implementation of the lower level units which it
invokes. The lower level units are built and tested in the same manner,
using stubs for programs which they invoke. This procedure is repeated,
substituting actual program units for the dummy units at successively

Tower levels until the entire system has been integrated and tested.

/'B=11

The 1mportant point is that program units at each level are full integrated
and tested with thelr predecessors before codlng begrns at’ the next 1ower
-level. , S

The use of dummy ca]llng routines or test drivers is prohibited unless a
Request for Dev1at1onlwa1ver has been subm1tted and approved

‘A routine is not be implemented until the calling routlne has been imple-
"mented. Data definition statements are coded and the actual data records
are generated before exercising any segment which references them. Top-Down
Imp]ementat1on does not imply that the implementation must proceed down the
hierarchy in parallel. Some branches intentionally will be developed earlier
than other branches. A11 code will be produced by members of the team and
reviewed by at least one member. If a Togic change is required during code
»generat1on or review, the HIPO is updated and appropriate entries will

be made in the development work book. If the logic changes are made to a
controlled portion of the HIPO, (e.g., a HIPO in the Part I), a formal re-
view is performed prior to proceeding. In general, HIPO's are updated
continuously throughout project duration to ref]ect the latest design/docu-
mentation of programs being developed. The CPC/CPCI test procedures are
updated continuously during the. 1mp]ementat1on period.

3.2.2 | Structured Code

The five constructs illustrated below.are adhered to wherever possible. The
Caine, Farber & Gordon pre- comp11er S-FORTRAN shall be used for all programs
except Processing Modules (PM's). Processing Modules are MIPS special pur-
pose programs designed to input and output data.

3.2.3 Hierarchy plus Input-Process-OutputA(HIPO)

: ,HIPO is the advanced programm1ng techn1que used.to support
documentation. HIPO 1is used as both a documentation technique and as

an aid in the support of top-down design.. HIPO documentation standards
are contained in the IBM document "HIPO - A Design Aid and Documentation
Technique". This document is used-as a gu1de The concepts are used
without all the drafting requlrements ' : . '

3.2.4 Chief Programmer Team

A chief programmer team is used in the deve]opment of the LSDB
CPCI. The team consists of the chief programmer and back-up programmer,
programmers, and a librarian.

Responsibilities of the team are:

a. ~ Chief Programmer i{s responsible to the non-real time
' "~ supervisor for the development of the programming system.
~ This person shall carry technical responsibility for the

project including managément coordination; production of
the critical core of the programming system in detailed
code, direct specification of all other codes required
for system implementation, and review of the integration
of that code. Individual responsibilities are identified
below: '

1. Function as first Tevel team manager.
2. Approve all HIPO's.

3. Conduct structured walk-throughs for Preliminary
Design Review (PDR) and Critical Design Review (CDR). .-

4. Chair the working walk-throughs with the team.
5. Approve all code.

6. Review and approve all code checkout runs and certify
the software ready for CPC/CPCI test.

7. Be responsible for preparation of:
(a) Test Plan.
(b) Training Plan.

(c) Users Manuals.

(d) Classroom training'bffﬁéerSJ
(e) Test Procedures :

- (f) Deve]opment Spec1f1cat1on Product Spec1f1cat1ons

8. Generate entries for the approprlate documentation
: sections of the LSDB Development Library.

9. Be .responsible for Measurements.

. "Back4Up'Prbgrammer supports the chief programmer at a

detailed task level so that to assume the chief programmer's
responsibility temporarily or permanently. This person,
though primarily a programmer, may be called upon to
explore alternate design approaches, independent test

- planning, or other special tasks but will serve normally

as an active participant in technical design, internal
supervision, and external management functions.

1. Code assigned routines.

Review code.

Generate/gather subsystem test data.

Generate/gather unit test data.

Code necessary stubs.

Review development specifications and test plans.

Write Users Manuals.

Write training plans.

. O .

Train users.

Generate entries for the appropriate document sections
of the LSDB development library.

—
o

Librarian assembles, compiles, and linkage-edits programs
and submits test-runs as requested by project programmers.
The librarian has responsibility for the project-

critical task of malntalnlng the Tibrary. The librarian
also performs the following functions:

B-14

~'Submit A1l Computer Runs.' The programming team
members must submit all computer jobs and/or .
keypunch forms to the librarian.. The librarian
punches the cards, verifies all. JCL, or adds the
required JCL and submits the job.: The librarian.also
corrects all obvious JCL, FORTRAN, and Assember
errors. Co ‘ T '

. "Catalog'and'Bind'A11'ComputerfRdﬁs; A1l computer

Jobs,are cataloged and kept in a binder. The
catalog contains the job name and data, filed
. in chronological order.

. *“Maintain the Development Data Base. The Jibrarian

1s responsible for running a variety of programs
in support of the developer's data base. This
requires performing the following functions:
(a) Adding new or replacing functions
(b) Adding new or replacing subroutines
(c) Allocating or deleting data sets
(d) Maintaining source in a LIBRARIAN data set
(e) Executing all the appropriate utilities to

- maintain data base integrity such as DBEXAM,

DBDELETE, DBSAVE, DBCOPY, DBMOVE, FDR, COMPRESS,
VTOCLIST etc. '

. Maintain the LSDB Development Library. The librarian

maintains all the document sections of the LSDB
development library.

0 Add new or replacement functions.

0 Add new or replacement subroutines.

0 Allocate or delete data sets.

o Maintain source in a LIBRARIAN data set.

0 Configuration control of all source not main-
tained by ADR Librarian must be provided.

Maintain the Subsystem Work Book. The librarian

maintains a developers subsystem work book.

6. Team Support. The 11brar1an performs keypunch1ng,.f

o typing, editing and drafting for the team when .these

, normal seryices are.not. ava11able from the support -
. groups.

7.0 0Offic¢ial Project Recorder The"]fbrarfan compiles
' and issues.all walk through and .meeting minutes.

3.2.5 Structured Walk- Throughs

A structured walk-through is conducted on all CPC's of the LSDB
CPCI. There will be two types of structured walk- throughs, a working
walk-through and a formal walk-through, each of which is described below.
Not only can these reviews help the developer to find errors in his
work earlier in the development cycle but reviewers have an opportunity
to learn new approaches and techniques and can be kept informed of the
characteristics of work related to their areas of respon51b1]1ty

The working walk-through is a structured wa]k -through with
the attendees composed of the LSDB structured programming team. Non-team
members shall attend at the chief programmer's discretion, e.g., a member
of Systems Engineering staff shall be invited to attend a working walk-
through of the CPC/CPCI Test Procedures.

At the formal structured walk-throughs for the PDR & CDR,
attendees from other groups are invited by the developer. Since it is
difficult to conduct a structured walk-through for a large group of
people, PDR and CDR attendence is limited by the Non-Real-Time
Branch Supervisor. While the entire Chief Programming team may be
present, only the chief programmer or his designate will conduct the
walk-through. Action items, using standard MIPS Action Item Forms, shall
be assigned rather than attempting to resolve prob]ems at the walk-
through. Reasons for the Chief Programmer Team's approach shall be
presented when several reasonable alternatives were considered.

The basic characteristics of the structured wa]k-through are:

a. It is arranged and scheduled by the developer of the work
product being reviewed.

b. The Chief Programmer selects the list of reviewers
: but the Non-Real-Time branch supervisor may review the
1ist to ensure that the review team will be able to

provide an adequate review. External participants may
include:

1. Management.
‘2. Developers of other parts of the MIPS system.

3. Supporting users and hardware engineers.

B~1¢

”
7

4, Testers responsib]e fofA56mbonent and system testing.

5. Designers of the system to. ensure compat1b111ty and

contlnulty of des1gn

6. Individuals respon51b1e for document1ng the funct1on

be1ng rev1ewed

A11 of the developer's products are rev1ewed during at
]east one: work1ng wa]k—through

- The. reviewers are g1ven the rev1ew materials at least
. four to six days prior to the wa]k—through and are expected

to review them and come to the session with a 1ist of
questions.’ ,

The walk-through is structured in the sense that all
attendees know what it is to be accomplished and what
role they are to play. The emphasis during the walk-
through is on problem.identification rather than problem
solution.

The chief programmer chairs the session and the librarian
records all errors, discrepancies, exposures, and in-
consistencies uncovered during the walk-through. MIPS
Action Item forms are used to record all actions to be
taken and responses thereto.

- A typical walk-through is scheduled to last for a

specified period of time, usually one or two hours. If
the session's objectives have not been met at the end
of that period, another walk-through is scheduled for
the next convenient time.

The following actions occur at a walk-through. First,

the reviewers are requested to comment on the completeness,
accuracy, and general quality of the work product. Major
concerns are expressed and identified as areas for poten-
tial follow-up. The product author gives a brief

tutorial overview of the work product. The product author
"walks" the reviewers through the work product in a
step-by-step fashion which follows the logic of the
function under investigation. The product author takes
the reviewers through the material in enough detail to
satisfy the major concerns expressed earlier in the
meeting.

Immediately after the meeting, the librarian distributes
copies of the handwritten action items to all the
attendees. The chief programmer, supported by management,
ensures that the action items are successfully resolved,
and that the reviewers are notified of the actions taken .
or of the corrections made.

B-17

3.3 ~ Measurements.

. ’

As mentioned above the LSDB proaect is be1ng measured and _
closely monitored during its entire development. The manual measurement
forms described in paragraph 2.2.6 are being augmented by automated
measurement gathering facilities available in the ADR LIBRARIAN and the
IBM Systems Management Facility (SMF) of the Operating System (0S). Of
particular note is the great bulk of archival data being gathered in.
support of the measurements. For instance, every computer listing ever
generated since the project inception has been saved. The LSDB Structured
Programming Library contains Standards and Conventions, the Development
Work- Book, the Test Work Book, the Monitor Work Book, Development Documents,
Structured Programming Documents, and the LSDB Support Documents. These
items are discussed in more detail in paragraph 3.3.3 below.

3.3.1 Manual Forms.

The manual forms were devised so that most of them are completed
on a "one-shot" basis. A1l forms are short and concise with explicit
instructions on the back. Although the forms have been designed for this
project, they could have app11cab111ty in other software development
act1v1t1es _

"The Personnel Profile is filled out once by everybody when they
are assigned to the project. The General Contract/Project Summary and
the Management Methodology Summary are filled out by the Project Lead/
Chief Programmer once at the start of the project. The Design and
Processor Summary and the Testing Summary are completed prior to the
Critical Design Review (CDR), i.e. the Tast formal review before start
of coding. The Systems Development Log is a multi-purpose form completed
on an irregular basis whenever a significant event transpires which
could have an impact on design and/or schedule. It is also completed
when a document or software increment is delivered, when a review or
audit has taken place, or when a piece of software passes a testing
phase. The Computer Program Run Analysis Report is filled out for each
Job submittal. Most of the information on this form is available on
the program listing. If a run is unsuccessful, the Computer Program
- Failure Analysis Report is completed. Much work went into generically
- categorizing the many possible errors to yield a workable set; error
examples are included on the back. As each person leaves the project,
either because it is complete, they have a new assignment, or they are
leaving; they are asked to complete the Technology Critique. The General
Project Wrap-Up Report is filled out by the Project Lead/Chief Programmer

at the completion of the project.

Particular attention should be given to the Computer Program
Run Analysis form and the Computer Program Failure Analysis form. The
first form is filled out for every job submittal. The second form is
completed when any job failure occurs. The bulk of the software
reliability information will be analysed by using these two forms. The

B-18

Software Development Log is useful in reconstruct1ng the prOJect scenario
including document deliveries, reviews and audits, and major des1gn
dec1s1ons

3.3.2 Automated Measuremente. e -

In order to take much of the burden of the project control and
measurement gathering off from the LSDB development team, automated
measures are gathered from.the ADR LIBRARIAN and the IBM 0S Systems

Management Facility.

A Weekly Module Report will be generated automatically from

- the librarian software, the ADR LIBRARIAN. This report will keep track
of module size, number of updates, number of runs, etc. A unique
feature of this report, to be used as a means for management visibility
and control, is the reporting facility. The report can be generated

a) periodically (weekly) b) on demand or c) on exception.

The program accounting information is gathered from SMF. The
compile times, pre-compile times, linkage edit times and run times are
- identified and accumulated on a module-by-module basis. This information
-is also available on a CPCI level. Other information such as turn-around
time and I/0 peripheral times are also captured.

3.3.3 Archival Data.

As mentioned above, every computer listing generated by the
prOJect has been retained as part of the back-up archival information.
In addition, the LSDB Structured Programming Library contains much
valuable information to completely describes the processing environment
in which this development effort is being accomplished. The information
contained in this library is detailed below.

1. Standards and Conventions. The Standards and Conventions
section contains the following items.

a. HIPO Standards

b. Strucfured Code Standards

c. Top Down Test Standards

d. Library Maintenance Procedures
e. Data Base Maintenance Procedures
f. Submittal Procedures

(1) Development to Production Library .

'(2). Documentation inéfudinﬁ Cbﬁputer Listings =~
g. Job Submittal Procedures | ¥{; |
'h. File Description Procedures_
i. . Procedures for updating tﬁe development work book
J. Procedures for updating the monitor work book
. k.. Procedures for updating the test work book
1. ADR LIBRARIAN procedures |
m. Code and message standards

Work Books. There are several work books which are kept
current during the development process.. These include

a. Development Work Book
| (1) Decision logs/reason'for design approach.
' (2) Notes from all walk-throughs.
(3) -HIPO/code.probiems that were uncovered.
(4) Results of AET testing. |
(5) Deviation/waiver log.
(6) Memorandums.
b. Test Work Book
(1) Test plan guidance.
(2) Test report guidance.
(3) LSDB test plan.
(4) Top-down testing approach for MIPLSD
c. Monitor Work Book
(1) General contract/project summary.
(2) Management methodology summary.

(3) Design and proqessor‘SUmmary.

/' B=20

(4) -Testing sdmméry.

(5) Technology critique.

(6) Personnel Profile.
(7) .System Development log.

(8) Computer program failure analysis report.
(9) General project wrap-up report. '

(10) Notes. |

(11) Computer run analysis reports contained in
- several volumes in chronological order.

Development Documents. Documents which have been prepared
during the development process are also retained. These
include . : ,

a. LSDB development specffications.
b.. LSDB test plan.

- c. - LSDB test procedures. -

d. CDR material.

e. Product specifications.

f. Action items.

~g. Draft documents.

Structured Programming Documents. The following documents
are kept as reference documents

a. Structured programming courses handouts.
b. S-FORTRAN.

c. IBM JCL/FORTRAN.

d. IBM Structured Programming test/workbook.

LSDB Support Documents. The following documents are re-
tained as interface reference material for the LSDB developers.

a. VPAR 34 Vol. I.
b. VPAR 34 Vol. II.

/‘ B-21

C. MFC CDR Material.
df MFC development specificeﬁions.'
e. System segment specificatiens:
3.4 Project Progress.

The LSDB development project has progressed on, or near, schedule
during its whole lifetime. A1l major milestones have been met. This is
despite the fact that the walk-throughs have uncovered several design
deficiencies which have been corrected without impacting the schedule.
Ordinarily many of these deficiencies would not be uncovered until
demonstration testing (DT&E) or beyond. The user involvement in the
walk-throughs has led to some design modifications due to requirement
changes. In a "traditional" development 1ife cycle these modifications
most certainly would not have been made until after the software had
become operational. Then the cost of making these modifications would

probably have been significantly higher.

- 3.5 Project Problems.

Over a year of planning went into the preparation of this

technology investigation. Other implementer's experiences were viewed

in light of the SAMTEC operational environment. Theoretically everything
was addressed and all contingencies planned for. Yet we have had some
problems. The importance of this paper seems to be in the fact that
despite carefull planning, rigorous application, and close monitoring,
certain unforeseen difficulties did arise. The following paragraphs

the most problems and what our management approach was to solving them.

3.5.1 Organizing a Library.

The joint SAMTEC/RADC Memorandum of Agreement stated that
SAMTEC would collect measurements and deliver them to RADC. Although
the manual measurement forms and the automated processes were established
. prior to the start of the LSDB development project, the archival (or
support) data had not been addressed. The measurements were decided upon,
but until the project was underway -the necessity for retaining archival
data was not realized. What data should be kept, what form should it
be preserved, and how was it to be delivered were all things that were
addressed after the project was underway. The burden of establishing
the LSDB development library fell on the project monitor and, primarily,
upon the programming librarian. Establishing what should go into each
of the work books, establishing procedures for maintaining the library,
and establishing the responsibilities of all the involved personnel was
an arduous task. The day-by-day development activities progressed while
much of this data had to be recovered. It was a long, difficult process.
Everything is in place now, but the task would have been much easier had
tgese items, procedures, responsibilities, etc. been established in
advance.

3.5.2 Single "Structured" Project in an Unstructured Environment.

. The choice of a MIPS CPCI was a good one for the reasons
detailed in paragraph 2.2.7. However, there are some.inherent problems
in taking a piece of a system under development and change the development
ground rules for that piece. Many of these difficulties were anticipated
and the LSDB Implementation Plan specifically addressed organizational
structure and responsiblities, walk-through procedures, and MIL-STD
deviations required in reviews and documentation. What was not anticipated
were difficulties uncovered by the technology itself. The top down
development method allows for design to progress hierarchically down
through the structure establishing the interfaces as the detail expanded.
In a system where the data base had previously been established, the
- increments, or CPCI's defined, and their interfaces described, much of
the top down design work has been done. This places design constraints
. at the CPCI level; the data interfaces suggest the module interfaces
rather than the other way around. Another difficulty involves team
operations. In theory placing a librarian onto a development team
relieves the technical people of the administrative and clerical tasks
and allows management to utilize their talents in a more effective manner.
This has not proved true in our technology investigation for a very
peculiar reason. The librarian has effectively relieved the developers
of the clerical functions which once took so much of their time. However,
since they are working on a target project which was using different
techniques in comparison with the other development efforts, management
had to assign other efforts to fill the void. This suggests better planning
of manpower utilization is needed when using this technology. The
technical people will become more productive only when their given more
to do. .

3.5.3 Impact of Measurements on the Development.

Once again, we foresaw that there would be an impact made by the
measurement process. We strived to minimize this impact with the careful
development of the manual forms and by augmenting the measurement
gathering by automated means. We also placed more personnel on the
project to absorb the measurement burden. This took care of the physical
impact but didn't take care of the psychological impact. People do
not like to be watched while they're working. Despite the minimal effect
the measurements have upon their day-to-day activities, there is certainly
an antagonism in knowing they are being measured at all. We are witnessing
a sort of "inverse - Hawthorne effect". Continued assurances that we are
measuring the technology and not the people has helped keep the measurement
process flowing.

3.5.4 Communication in Walk-Throughs.

Both the developers and users at SAMTEC have been used to
communicating at Preliminary Design Reviews (PDR's) or Critical Design

/ B-23

Reviews (CDR's). Both of these reviews are rather formal, involve a lot

of people, and usually a lot of material. Because of the bulk of information,
a whole CPCI, these reviews seldom get into design detail. In going to

a structured walk~through format, SAMTEC established explicit rules as

to the attendance, format, and materials to be covered. This was a new
procedure for user and developer alike. There was a definite Tearning

curve involved before. these parties were comfortable with format. Now

this communication seems to flow easily but at first many small procedural
modifications were required.

'3.5.5 - User-Involvement.

There are only two things wrong with user involvement - there's not
enough or there's too much. The idea behind the structured walk-throughs was
to get the user involved in the day-by-day development process so that he
could better see if his requirements are being met. It is felt that design
deficiencies and requirement changes could be identified earlier in the life
cycle they could be modified with minimal impact upon the schedule. This
has certainly proved true in the LSDB development. However, the old statement
"a little learning is a dangerous thing" is certainly applicable. As the user
. has become more and more knowledgeable of the design detail, he has often
yielded to the human tendency to dictate that detail. He also has the
tendency to want slight requirement changes or "nice-to-have" additions with-
out being aware of the impact of these changes on the system as a whole. This
is a problem that is gradually.improving as the user's learning goes up and
with the developer's adherence to a workable design.

3.5.6 - Use of HIPO's as a Communicational and Design Technique.

Probably SAMTEC's biggest managemnet probiem has been with the use
of HIPOs. Theoretically HIPOs allow the user to see how his requirements
have been satisfied by presenting the design in his own words. In practice,
learning a new graphical technique, after years of trying to get comfortable
with flow charts, was a very confusing and frustrating experience. Once again
there is a great learning curve. The developer has to know how to use HIPOs
in his design so that they truly communicate his approach. The user needs
to understand the graphics and the hierarchy so that he can understand the
data flow. Perhaps a Program Design Language (PDL) is the answer. PDL has
proven very effective when presented in SAMTEC's training courses. By using
PDL in the "Process" portion of a HIPO, an effective means of bridging the
"Input" to thé "Output" was seen. Also the PDL can be done at any level of
detail necessary to communicate the detail required.

3.6 Present Status.

The LSDB project is nearing completion. The CPCI is currently
undergoing testing by the independent MIPS test group. The measurement
forms and archival data are being microfiched in preparation for delivery
to RADC. The developers are placing more comments in code, documenting,
and writing their views of the project and the technology.

B-24 ,

AcknoWlengment.

This project and this paper would not have been possible without
the continued support and encouragement of many people. It would be impos-
sible to name them all, but we would like to single out some people who
have made significant contributions to this effort. Mr. Frank Sliwa of
RADC has given his enthusiasm, confidence and friendship to all of us during
our working relationship. We are indebted to Dr. Herbert Hecht of Aerospace
Corporation for his continued support and for permission to use some of
his visuals in the presentation. Lt. Col. Everett A. Lyons III (ret.) was
instrumental in getting the ASTROS project underway and providing keen
management insight. Dr. John P. Johnson and Donald Reifer of Aerospace
- Corporatjon have lent their technical knowledge and guidance. David
Wulftange of Federal Electric Corporation has performed a yeoman service
. as the LSDB project monitor. John Johnson of Federal Electric Corporation
who has given his support as MIPS Project Manager. And a very special
thanks to the LSDB development team - Tom Hull, Chief Programmer; Sue
Wagoner, Programming Librarian; John McMillan and John Malengo.

