6,636 research outputs found

    Lattice Identification and Separation: Theory and Algorithm

    Get PDF
    Motivated by lattice mixture identification and grain boundary detection, we present a framework for lattice pattern representation and comparison, and propose an efficient algorithm for lattice separation. We define new scale and shape descriptors, which helps to considerably reduce the size of equivalence classes of lattice bases. These finitely many equivalence relations are fully characterized by modular group theory. We construct the lattice space L\mathscr{L} based on the equivalent descriptors and define a metric dLd_{\mathscr{L}} to accurately quantify the visual similarities and differences between lattices. Furthermore, we introduce the Lattice Identification and Separation Algorithm (LISA), which identifies each lattice patterns from superposed lattices. LISA finds lattice candidates from the high responses in the image spectrum, then sequentially extracts different layers of lattice patterns one by one. Analyzing the frequency components, we reveal the intricate dependency of LISA's performances on particle radius, lattice density, and relative translations. Various numerical experiments are designed to show LISA's robustness against a large number of lattice layers, moir\'{e} patterns and missing particles.Comment: 30 Pages plus 4 pages of Appendix. 4 Pages of References. 24 Figure

    Fast Algorithms for Surface Reconstruction from Point Cloud

    Full text link
    We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating Direction Method of Multipliers-type algorithm, where each sub-problem is solved efficiently. We analyze the effects of the parameters on the level-set evolution and explore the connection between these two approaches. We present numerical examples to validate our algorithms in terms of their accuracy and efficiency

    Metallic surface states in a correlated d-electron topological Kondo insulator candidate FeSb2

    Full text link
    The resistance of a conventional insulator diverges as temperature approaches zero. The peculiar low temperature resistivity saturation in the 4f Kondo insulator (KI) SmB6 has spurred proposals of a correlation-driven topological Kondo insulator (TKI) with exotic ground states. However, the scarcity of model TKI material families leaves difficulties in disentangling key ingredients from irrelevant details. Here we use angle-resolved photoemission spectroscopy (ARPES) to study FeSb2, a correlated d-electron KI candidate that also exhibits a low temperature resistivity saturation. On the (010) surface, we find a rich assemblage of metallic states with two-dimensional dispersion. Measurements of the bulk band structure reveal band renormalization, a large temperature-dependent band shift, and flat spectral features along certain high symmetry directions, providing spectroscopic evidence for strong correlations. Our observations suggest that exotic insulating states resembling those in SmB6 and YbB12 may also exist in systems with d instead of f electrons

    Robust PDE Identification from Noisy Data

    Full text link
    We propose robust methods to identify underlying Partial Differential Equation (PDE) from a given set of noisy time dependent data. We assume that the governing equation is a linear combination of a few linear and nonlinear differential terms in a prescribed dictionary. Noisy data make such identification particularly challenging. Our objective is to develop methods which are robust against a high level of noise, and to approximate the underlying noise-free dynamics well. We first introduce a Successively Denoised Differentiation (SDD) scheme to stabilize the amplified noise in numerical differentiation. SDD effectively denoises the given data and the corresponding derivatives. Secondly, we present two algorithms for PDE identification: Subspace pursuit Time evolution error (ST) and Subspace pursuit Cross-validation (SC). Our general strategy is to first find a candidate set using the Subspace Pursuit (SP) greedy algorithm, then choose the best one via time evolution or cross validation. ST uses multi-shooting numerical time evolution and selects the PDE which yields the least evolution error. SC evaluates the cross-validation error in the least squares fitting and picks the PDE that gives the smallest validation error. We present a unified notion of PDE identification error to compare the objectives of related approaches. We present various numerical experiments to validate our methods. Both methods are efficient and robust to noise
    • …
    corecore