431 research outputs found

    Terahertz quantum cascade lasers - first demonstration and novel concepts

    Get PDF
    Quantum cascade (QC) lasers operating at terahertz frequencies were demonstrated two years ago, and, since then, their development has proceeded at a very rapid pace. The gain medium of the first devices was based on chirped superlattices, and a resonator relying on the surface plasmon concept was employed to achieve a large optical confinement with concomitant low propagation losses. Laser action was obtained at 4.4 THz, in pulsed mode and at temperatures up to 50 K. Improved fabrication allowed continuous-wave (cw) operation and increased the operating temperature to 75 K. Using a similar active region, lasing at 3.5 THz was achieved. More recently, various groups have introduced several new design concepts such as bound-to-continuum transitions and extraction of carriers via resonant phonon scattering, leading to pulsed operation up to 140 K, output powers of up to 50 mW, and cw operation up to 93 K. The lowest emission frequency is now 2.1 THz, tackling the technologically important region of 1.5-2.5 THz. Stable single-mode emission under all operating conditions has also recently become a reality thanks to the adoption of distributed feedback resonators. This rapid and substantial progress underlines the growing potential of QC lasers in THz photonics

    Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators

    Get PDF
    Distributed feedback terahertz quantum-cascade lasers emitting at 4.34 and 4.43 THz are presented. Mode selection is based on a complex-coupling scheme implemented into the top-contact layer by a combination of wet chemical etching and ohmic-contact deposition. Single-mode emission stable at all injection currents and operating temperatures is shown, with a side-mode suppression ratio exceeding 20 dB. Peak output powers of up to 1.8 mW are obtained at low temperatures. (C) 2004 American Institute of Physics

    Terahertz quantum cascade laser as local oscillator in a heterodyne receiver

    Get PDF
    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator. (C) 2005 Optical Society of America

    On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing

    Full text link
    We report on the fabrication of three-dimensional (3D) high-Q whispering gallery microcavities on a fused silica chip by femtosecond laser microfabriction, enabled by the 3D nature of femtosecond laser direct writing. The processing mainly consists of formation of freestanding microdisks by femtosecond laser direct writing and subsequent wet chemical etching. CO2 laser annealing is followed to smooth the microcavity surface. Microcavities with arbitrary tilting angle, lateral and vertical positioning are demonstrated, and the quality (Q)-factor of a typical microcavity is measured to be up to 1.07x10^6, which is currently limited by the low spatial resolution of motion stage used during the laser patterning and can be improved with motion stages of higher resolutions.Comment: 17 pages, 3 figure

    Cavitation in high-capacity tensiometers:effect of water reservoir surface roughness

    Get PDF
    High-capacity tensiometers (HCTs) are sensors made to measure negative pore water pressure (suction) directly. In this paper, a new approach is proposed to expand the range and duration of suction measurements for a newly designed HCT. A new technique is employed to reduce significantly the roughness of the diaphragm’s surface on the water reservoir side in order to minimise the possibility of gas nuclei development and the subsequent early cavitation at the water–diaphragm interface. The procedures employed for the design, fabrication, saturation and calibration of the new tensiometers are explained in detail. Furthermore, the performance of the developed HCTs is examined based on a series of experiments carried out on a number of unsaturated clay specimens. An improvement in maximum sustainable suction in the range of 120–150% of their nominal capacity was obtained from different surface treatment methods. Moreover, the results show an improvement of up to 177% for the long-term stability of measurements, compared to the developed ordinary HCTs with untreated diaphragms

    A Novel Peptide ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses

    Get PDF
    BACKGROUND: Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA. CONCLUSION/SIGNIFICANCE: The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas

    Effects Of (R)-(-)-5-Methyl-1-Nicotinoyl-2-Pyrazoline On Glutamate Transporter 1 And Cysteine/Glutamate Exchanger As Well As Ethanol Drinking Behavior In Male, Alcohol-Preferring Rats

    Get PDF
    Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We recently showed that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for 5 weeks in alcohol-preferring (P) rats and that upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex results, in part, in attenuating ethanol consumption. Cystine glutamate antiporter (xCT) is also downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. This study examines the effect of a synthetic compound, (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expressions of GLT-1 and xCT in the amygdala and the hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for 5 weeks, after which they received treatments of MS-153 or vehicle for 5 days. The results show that MS-153 treatment significantly reduces ethanol consumption. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and the hippocampus of ethanol–vehicle-treated rats (ethanol–vehicle group) compared with water-control animals. MS-153 treatment upregulated GLT-1 and xCT expressions in these brain regions. These findings demonstrate an important role for MS-153 in these glutamate transporters for the attenuation of ethanol-drinking behavior
    • …
    corecore