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Effects of MS-153 on glutamate transporter 1 and cysteine/
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male P rats
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Sari1,*

1University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of 
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Abstract

Alcohol consumption is largely associated with alterations in the extracellular glutamate 

concentrations in several brain reward regions. We have recently found that glutamate transporter 

1 (GLT-1) is downregulated following chronic exposure to ethanol for five weeks in alcohol-

preferring rats, and upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex 

resulted, in part, in attenuating ethanol consumption. Cysteine glutamate antiporter (xCT) was also 

found to be downregulated after chronic ethanol exposure in P rats, and its upregulation could be 

valuable in attenuating ethanol drinking. In this study, we examined the effect of a synthetic 

compound, (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and 

expression of GLT-1 and xCT in the amygdala and hippocampus of P rats. P rats were exposed to 

continuous free-choice access to water, 15% and 30% ethanol, and food for five weeks, and then 

after which they received treatments of MS-153 or vehicle for five days. The results showed that 

MS-153 treatment significantly reduced ethanol consumption in P rats. It was revealed that GLT-1 

and xCT expressions were downregulated in both the amygdala and hippocampus of ethanol-

vehicle treated rats (ethanol vehicle group) as compared to water control animals. Importantly, 

MS-153 treatment upregulated GLT-1 and xCT expression in these brain regions. These findings 

provide important role of MS-153 on these glutamate transporters for the attenuation of ethanol 

drinking behavior.
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Introduction

Extracellular glutamate concentration is maintained through the uptake mechanism by 

astrocytes (Parpura and Verkhratsky, 2012). Glutamate uptake by these astrocytes occurs 

through several types of glutamate transporters [for review see (Danbolt, 2001)]. The most 

predominant transporter is glutamate transporter 1 (GLT-1, its human homolog termed 

excitatory amino acid transporter 2, EAAT2), which is responsible for clearing more than 

90% of extracellular glutamate (Danbolt, 2001, Mitani and Tanaka, 2003). The import of 

glutamate into astrocytes through GLT-1 is required for subsequent release by the cysteine 

glutamate antiporter (xCT), which is responsible for releasing glutamate in exchange for 

cystine (Warr et al., 1999, Melendez et al., 2005). This results in the regulation of synaptic 

glutamate release (Moussawi and Kalivas, 2010).

It has become increasingly apparent that glutamate neurotransmission in the nucleus 

accumbens (NAc) mediates drug-seeking behavior, and the changes in glutamate 

transmission in this brain region are assumed to mediate the switch from intermittent use of 

drugs to dependence (Gipson et al., 2014). It is noteworthy to mention that glutamatergic 

input into the NAc from other brain regions has a key role in regulating addictive behavior. 

Importantly, it is well known that the NAc receives glutamatergic afferents from the 

prefrontal cortex (PFC) (Papp et al., 2012, Stefanik et al., 2013), amygdala, particularly the 

basolateral amygdala (BLA) (Stuber et al., 2011, Papp et al., 2012), and the ventral 

hippocampus (Britt et al., 2012, Papp et al., 2012). Each of these glutamatergic projections 

has a role in addictive behavior. For instance, glutamatergic projections from the PFC to the 

NAc have been implicated in goal-directed behaviors and in executing an adaptive 

behavioral response (Gipson et al., 2014). Alternatively, activation of glutamatergic 

projections from the BLA to the NAc also promotes motivated behavioral response (Stuber 

et al., 2011). Additionally, activation of glutamatergic projections from the hippocampus 

(Hipp) promotes addiction-like behavior and relapse-like to cocaine seeking behavior (Vorel 

et al., 2001).

Amygdala has been extensively examined for its role in addiction (Di Ciano and Everitt, 

2004), anxiety, memory (particularly aversive learning), and emotional behavior (Lalumiere, 

2014). Additionally, both sensitization and drug seeking behaviors require glutamate release 

into the NAc and the source of this glutamate is from the amygdala and PFC (Kalivas et al., 

2009). Alternatively, more attention has been paid recently to the Hipp because it has an 

important role in reward learning and drug-context memory (Fuchs et al., 2005, Adcock et 

al., 2006, Hernandez-Rabaza et al., 2008, Delgado and Dickerson, 2012). The Hipp is an 

important brain region in terms of addiction and drug-context memory (Adcock et al., 2006, 

Meyers et al., 2006, Shen et al., 2006, Hernandez-Rabaza et al., 2008) and relapse to drug 

abuse (Vorel et al., 2001, Fuchs et al., 2005). Alternatively, other studies have shown that 

chronic ethanol exposure is associated with impairment of hippocampal neurogenesis 

(Herrera et al., 2003, He et al., 2005). Reduction in hippocampal neurogenesis has been 

linked to cocaine addiction (Noonan et al., 2010). It is well known that astrocytic xCT is an 

important source of glutathione that can protect against oxidative damage and 

neurodegeneration (Griffith, 1999, Bridges et al., 2012, Lewerenz et al., 2012). Additionally, 

it has been shown that glutamate excitotoxicity involves the inhibition of cystine exchange 
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and eventually neuronal cell death via oxidative stress (Murphy et al., 1989). These studies 

indirectly showed impact of chronic ethanol exposure and the role of xCT in regulating 

glutamate level in the Hipp.

Alcohol consumption is associated with alterations in the extracellular glutamate 

concentrations in various brain reward regions [reviewed by (Rao and Sari, 2012)]. 

Additionally, studies have reported increases in glutamate concentrations in ethanol 

withdrawal and binge ethanol-drinking paradigms (Dahchour and De Witte, 1999, Ward et 

al., 2009), as well as in hippocampal rat slides (Roberto et al., 2004). We have recently 

found that GLT-1 is downregulated in P rats following exposure to ethanol for five weeks in 

the NAc but not in the PFC (Sari et al., 2013). Recent studies from our laboratory have 

shown that ceftriaxone treatment in P rats, known to upregulate GLT-1 expression 

(Rothstein et al., 2005), resulted in attenuating ethanol consumption and this effect was 

associated, in part, with upregulation of GLT-1 expression in the NAc and PFC (Sari et al., 

2011) as well as in the amygdala (Rao and Sari, 2014).

In this study, we tested MS-153 [(R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline] as a 

compound known to enhance glutamate uptake (Shimada et al., 1999). This compound has 

been shown to prevent release of glutamate in case of ischemia, probably by inhibiting high 

voltage-gated calcium channels via interactions with protein kinase C (PKC) (Uenishi et al., 

1999). Interestingly, MS-153 was effective in inhibiting the development of tolerance and 

physical dependence to morphine (Nakagawa et al., 2001). Additionally, the conditioned 

rewarding effects of morphine, methamphetamine and cocaine were also inhibited with 

MS-153 treatment (Nakagawa et al., 2005). Importantly, we recently reported that MS-153 

treatment (at a dose of 50 mg/kg/day i.p.) attenuated ethanol intake in P rats, and that this 

effect was associated, at least in part, with upregulation of GLT-1 expression in the NAc but 

not in the PFC. Additionally, we showed that GLT-1 upregulation, in the NAc of MS-153 

treated rats, was associated with upregulation of the nuclear NF-kB level and 

downregulation of the cytoplasmic IkBα level as a possible pathway underlying the GLT-1 

upregulatory effect of MS-153 (Alhaddad et al., 2014b). Based upon this evidence, we 

aimed in this study to examine the effects of MS-153 treatment in modulating the expression 

of GLT-1 and, importantly, xCT in the amygdala and Hipp of P rats exposed to a continuous 

five-week ethanol-drinking paradigm.

Material and Methods

Animals

Male alcohol-preferring (P) rats, an established model for alcoholism (Sari et al., 2006), 

were used in this study to test the effect of MS-153 on ethanol drinking as well as the 

expressions of GLT-1 and xCT in both the amygdala and Hipp. P rats were received from 

Indiana University School of Medicine (Indianapolis, USA) at the age of 21–30 Days. In the 

Department of Laboratory Animal Resources (The University of Toledo, Health Science 

Campus), P rats were individually housed in bedded plastic tubs. All animals had ad lib 

access to food and water. P rats were accustomed to a temperature of 25°C, 50% humidity, 

and a 12-hour light-dark cycle. All experimental and animal housing procedures mentioned 

were approved by the Institutional Animal Care and Use Committee of The University of 
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Toledo in accordance with the guidelines of the Institutional Animal Care and Use 

Committee of the National Institutes of Health and the Guide for the Care and Use of 

Laboratory Animals (Institute of Laboratory Animal Resources, Commission on Life 

Sciences, 1996). At the beginning of this study, all animals were 90 days old. Three 

experimental groups were used. (1) The ethanol-naïve vehicle group had free access to food 

and water only (n=5) and received i.p. injections of vehicle solution (1% DMSO in PBS); 

(2) the ethanol vehicle group received i.p. injections of the same vehicle solution (n=10); 

and (3) the ethanol MS-153 group received i.p. injections of MS-153 (50 mg/kg body 

weight) (n=5). During the entire study, the last two groups (ethanol vehicle group and 

ethanol MS-153 group) had continuous free-choice access to water, 15% and 30% ethanol 

and food.

Behavioral drinking paradigms

At the age of 90 days, both the ethanol vehicle and ethanol MS-153 groups were exposed to 

uninterrupted, free-choice access to water, 15% and 30% ethanol, and food for five weeks, 

as described recently (Sari et al., 2011). During the last two weeks, we measured body 

weight, ethanol intake and water intake three times per week. Both ethanol and water intake 

were measured by subtracting the weight of the bottle containing ethanol or water from its 

initial weight. Using the densitometry formula, ethanol intake measurements were converted 

into the grams of ethanol consumed per kilogram of animal body weight per day. The 

average measurements of ethanol consumption, water intake and body weight during the last 

two weeks of the five-week drinking paradigm were used as a baseline. All animals that 

drank less than 4 g of ethanol/kg/day were excluded from the study. On week 6, both the 

ethanol naïve vehicle and ethanol vehicle groups were i.p. injected with 1% DMSO in PBS. 

However, the ethanol MS-153 group received i.p injections of MS-153 (50 mg/kg body 

weight) in 1% DMSO in PBS. All animals were i.p. injected for five consecutive days. 

Ethanol intake, water intake and body weight were measured every day on which i.p. 

injections were administered. Furthermore, all animals were euthanized and then decapitated 

24 hours after the last injection.

Brain tissue harvesting

After animals were decapitated using a guillotine, brains were immediately dissected out and 

stored at −70°C. Brain regions were then extracted, in accordance with Paxinos and Watson 

Atlas for the rat brain (Paxinos and Watson, 2007), in the cryostat machine, which was 

maintained at −20°C to keep the brain tissues frozen. Extracted brain regions were then kept 

at −70° C for Western blot analysis to examine protein expression.

Western blot analysis

Western blot was performed in the amygdala and Hipp to determine changes in GLT-1 and 

xCT expressions, as described recently (Sari et al., 2009, Sari et al., 2011, Sari et al., 2013, 

Alhaddad et al., 2014a). In brief, the amygdala and Hipp samples were homogenized using 

lysis buffer with phosphatase and protease inhibitors. Samples were quantified using Bio-

Rad quantification reagents (Bio-Rad, Hercules, CA, USA), and equal amounts of proteins 

from all the groups were loaded on either 10–20% glycine gel (Invitrogen) or Mini-

PROTEAN® Precast gels (Bio-Rad). Proteins were transferred electrophoretically onto a 
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PVDF membrane. Non-specific bands were blocked by incubating the PVDF membrane in 

blocking buffer containing non-fat dry milk in TBST (50 mM Tris HCl; 150 mM NaCl, 

pH7.4; 0.1% Tween20) for 30 minutes to 1 hr at room temperature. Subsequently, the 

membrane was incubated overnight at 4°C after adding either Guinea pig anti-GLT-1 

(Millipore; 1:5000 dilution) or rabbit anti-xCT antibody (Novus; 1:1000 dilution). The 

membranes were washed in TBST, and horseradish peroxidase labeled anti-guinea pig or 

anti-rabbit secondary antibody (1:5000 dilution) was used to detect the proteins. After 

washing the membranes, chemiluminescent substrate was used to detect the proteins 

(SuperSignal® West Pico). Kodak BioMax MR Films (Thermo Fisher Scientific) were used 

to capture the signals from HRP and a SRX-101A machine was used to develop the films. β-

tubulin was used as a loading control. Subsequently, the bands on the films were digitized 

and analyzed using the MCID system. Finally, the data were reported as GLT-1/β-tubulin or 

xCT/β-tubulin ratios.

Statistical analysis

General Linear Model (GLM) repeated measures were used to analyze the behavioral data 

related to ethanol consumption, water intake and body weight, followed by an independent t-

test to determine the daily effect of treatment. Additionally, one-way ANOVA followed by 

Newman-Keuls multiple comparisons post-hoc test was used to analyze Western blot data 

(GLT-1/β-tubulin and xCT/β-tubulin ratio) for comparisons between ethanol-naïve, ethanol 

vehicle, and ethanol MS-153 treatment groups. All statistical tests results were based on 

p<0.05 level of significance.

Results

Effects of MS-153 on ethanol consumption, water intake, total fluid intake and body weight 
of P rats

GLM repeated measures demonstrated a significant main effect of day [F (1, 5) =11.436, 

p<0.0001] and a significant day × treatment interaction [F (1, 5) =9.239, p<0.0001] of 

ethanol consumption. An independent t-test revealed a statistically significant reduction in 

ethanol consumption in MS-153-treated rats from 24 hrs after the first injection (p<0.001) 

through the end of the study (Fig. 1A). Furthermore, GLM revealed a significant main effect 

of day on water intake [F (1, 5) =3.558, p<0.01] and a significant day × treatment interaction 

[F (1, 5) =2.704, p<0.05]. An independent t-test demonstrated a significant increase in water 

intake on days1, 3 and 4 of treatment (p<0.05) (Fig. 1B). Regarding body weight, statistical 

analyses using GLM revealed a significant main effect of day [F (1,5)=3.777, p<0.01] and a 

significant day × treatment interaction[F(1,5)=3.451, p<0.01]. Independent t-test did not 

reveal any statistically significant difference in body weight between ethanol vehicle- and 

ethanol MS-153-treated groups (p>0.05) (Fig. 1C). Furthermore, statistical analysis of total 

fluid intake data demonstrated a significant main effect of day [F (1, 5) =2.837, p<0.05] and 

a non-significant day × treatment interaction [F (1, 5) =1.747, p > 0.05]. However, 

independent t-test revealed a significant increase in total fluid intake in MS-153 treated P 

rats, on days 3 and 4, as compared to vehicle treated rats (p<0.05) (Fig. 1D).
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Effect of MS-153 on GLT-1 and xCT expression in Amygdala

One-way ANOVA analysis of GLT-1 data revealed a significant difference among all 

treatment groups [F (2,12)=11.56, p=0.0016]. Additionally, Newman-Keuls multiple-

comparisons post-hoc test demonstrated a significant upregulation of GLT-1 expression in 

MS-153-treated animals compared to vehicle-treated rats (p<0.01). Alternatively, GLT-1 

expression was found significantly downregulated in the ethanol-vehicle group compared to 

the naïve-vehicle group (p<0.01) (Fig. 2).

Furthermore, one-way ANOVA analysis of Western blot data demonstrated a significant 

difference between the ethanol-naïve, ethanol vehicle and ethanol MS-15 treatment groups 

[F (2,12) =9.698, p=0.0031). Newman-Keuls multiple-comparisons post-hoc test 

demonstrated a significant upregulation of xCT expression in the MS-153-treated group 

compared to the ethanol vehicle-treated group (p<0.01). Furthermore, Newman-Keuls post-

hoc test revealed a significant downregulation of xCT expression in ethanol vehicle animals 

compared to ethanol-naïve vehicle animals (p<0.05). However, statistical analysis did not 

show any significant difference in xCT expression between ethanol-naïve vehicle- and 

MS-153-treated groups (Fig. 3).

Effect of MS-153 on GLT-1 and xCT expression in the Hippocampus

One-way ANOVA demonstrated a significant difference in GLT-1 expression among all 

treatment groups [F(2,12)=12.83, p=0.001). Further, Newman-Keuls post-hoc test revealed a 

significant upregulation of GLT-1 expression in MS-153-treated rats compared to vehicle-

treated rats (p<0.01). Additionally, GLT-1 expression was found to be significantly 

downregulated in the ethanol vehicle group as compared to the naïve vehicle group 

(p<0.05). However, no significant difference was found between naïve and MS-153 

treatment groups (Fig. 4).

We further explored the effect of MS-153 on xCT expression in the Hipp (Fig. 5). One-way 

ANOVA demonstrated a significant difference among the ethanol naïve, ethanol vehicle and 

ethanol MS-153 treatment groups [F (2,12)=7.167, p=0.009). Newman-Keuls, multiple-

comparisons, post-hoc test revealed a significant upregulation of xCT expression in the 

MS-153-treated group compared to the ethanol vehicle-treated group (p<0.01). Additionally, 

xCT was significantly downregulated in the ethanol vehicle group compared to the ethanol 

naïve vehicle group (p<0.05). Statistical analysis did not show a significant difference in 

xCT expression between the ethanol naïve vehicle and MS-153 treatment groups.

Discussion

In this study, we report that MS-153 treatment is associated with a significant attenuation in 

daily ethanol consumption starting 24 hours after the first dose of MS-153 compared to 

vehicle-treated animals. Additionally, water intake in MS-153- treated rats was found to be 

significantly higher than in vehicle-treated rats. Statistical analyses did not show any 

significant effect on body weight of the MS-153-treated animals during the study. It is 

noteworthy that water intake in the MS-153-treated group was significantly higher compared 

to control animals on days 1, 3 and 4, which could be explained as a behavioral 
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compensatory mechanism due to reduction in ethanol intake. This is in agreement with 

recent studies from our lab using ceftriaxone as a GLT-1 upregulator (Sari et al., 2011, Sari 

and Sreemantula, 2012, Rao and Sari, 2014). We also found that there is increase in total 

fluid in MS-153 treated group. This was due to increase in water intake in MS-153 treated 

group as compared to control group.

A reduction in ethanol intake was found, along with significant upregulation of xCT and 

GLT-1 expressions in the amygdala and Hipp. Elevated extracellular glutamate 

concentrations have been reported after ethanol exposure in the amygdala and Hipp 

(Dahchour and De Witte, 1999, Roberto et al., 2004, Chefer et al., 2011). We found a 

downregulation of GLT-1 in the amygdala and Hipp of ethanol vehicle-treated animals, 

which can partially explain the elevated glutamate concentrations. Furthermore, 

upregulation of GLT-1 expression following treatment with MS-153 may be associated in 

part with the reduction in ethanol intake in this drug-treated group. In this study, we also 

found significant downregulation of xCT expression in the amygdala and Hipp of P rats 

exposed to five weeks of continuous ethanol exposure compared to ethanol naïve rats. It is 

well known that the reduction in xCT expression causes a decrease in extracellular, non-

synaptic glutamate concentration, and consequently the loss of glutamatergic tone on 

presynaptic mGLU2/3 receptors, thereby causing an increase in synaptic glutamate release 

(Moran et al., 2005, Javitt et al., 2011). Moran and colleagues have found that restoring xCT 

activity by N-acetylcysteine prevented cocaine-seeking behavior (Moran et al., 2005). 

Alternatively, activating mGLU2/3 receptors was shown to be effective in attenuating cue-

induced ethanol seeking (Zhao et al., 2006). Additionally, chronic exposure to ethanol 

induced an inhibition of mGLU2/3 receptor function (Moussawi and Kalivas, 2010). It is 

noteworthy that modafinil requires xCT action to attenuate cocaine reinstatement by 

activating the mGLU2/3 receptor (Mahler et al., 2014). In our present study, we found that 

MS-153 treatment for five days caused an upregulation in xCT expression. Restoring the 

xCT level would eventually lead to a reduction in the extracellular glutamate level and 

therefore may reduce ethanol drinking.

The Hipp is an important brain region in terms of addiction and drug-context memory 

(Adcock et al., 2006, Meyers et al., 2006, Shen et al., 2006, Hernandez-Rabaza et al., 2008) 

and relapse to drug abuse (Vorel et al., 2001, Fuchs et al., 2005). Alternatively, other studies 

have shown that chronic alcohol exposure is associated with impairment of hippocampal 

neurogenesis (Herrera et al., 2003, He et al., 2005). Reduction in hippocampal neurogenesis 

has been linked to cocaine addiction (Noonan et al., 2010). It is well known that astrocytic 

xCT is an important source of glutathione that can protect against oxidative damage and 

neurodegeneration (Griffith, 1999, Bridges et al., 2012, Lewerenz et al., 2012). Additionally, 

it has been shown that glutamate excitotoxicity involves the inhibition of cystine exchange 

and eventually neuronal cell death via oxidative stress (Murphy et al., 1989). These studies 

indirectly support the idea that upregulation of xCT is important to decrease extracellular 

glutamate and possibly decrease the neuronal loss associated with chronic ethanol exposure.

Several studies have focused on the importance of the amygdala in addiction and drug 

reinforcement (Baxter and Murray, 2002, Sinclair et al., 2012, Christian et al., 2013). 

Chronic ethanol exposure was found associated with increased presynaptic glutamate release 
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(Roberto et al., 2004). Alternatively, elevated extracellular glutamate and neuronal loss were 

found associated with chronic ethanol exposure in the Hipp. These findings further support 

our suggestions regarding the downregulation of xCT. Accordingly, upregulating xCT 

expression using MS-153 might be important for targeting the elevated extracellular 

glutamate concentrations in the amygdala and consequently reducing ethanol consumption.

In summary, the present study demonstrates that MS-153 is effective in attenuating ethanol 

consumption in male P rats after challenging them with five weeks of a free-choice ethanol-

drinking paradigm. The reduction in ethanol intake was found to be associated, at least in 

part, with upregulation of both xCT and GLT-1 expression in the amygdala and Hipp. Based 

on these findings, we conclude that MS-153 is a drug target that may normalize GLT-1 and 

xCT expression and consequently reduce alcohol dependence.
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Figure 1. 
(A) Effects of MS-153 treatment on average daily ethanol intake (g/kg/day) in male P rats 

exposed to five weeks of continuous free choice of ethanol and water. Statistical analyses 

demonstrated a significant difference between MS-153 treated group (n=5) and ethanol 

vehicle group (n=10). Additionally, independent t-test revealed a significant decrease in 

ethanol intake with MS-153 (50 mg/kg, i.p.) treated group from Day 1 (24 hrs after the first 

i.p. injection) through Day 5 as compared to ethanol vehicle group. (B) Effects of MS-153 

treatment on average daily water intake (ml/kg/day) in male P rats exposed to five weeks of 

continuous free choice of ethanol and water. Statistical analysis revealed a significant 

increase in water consumption in MS-153-treated P rats as compared to ethanol vehicle-

treated P rats, on days 1, 3 and 4. (C) Effects of MS-153 treatment on body weight (grams) 

of male P rats exposed to five weeks of continuous free choice access to ethanol and water. 

Statistical analysis of animals’ body weight data revealed no significant difference in body 

weight between the ethanol MS-153-treated group and the ethanol vehicle-treated group 

during the entire period of the study. (D) Effect of MS-153 treatment on total fluid intake of 

male P rats exposed to continuous free choice access to ethanol and water. Statistical 

analysis showed significant increase in total fluid intake in MS-153 treated group, on days 3 

and 4, as compared to vehicle treated group. Data are shown as mean ± SEM. (*p<0.05; 

**p<0.01; **p<0.001).
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Figure 2. 
Effect of MS-153 on GLT-1 expression in the amygdala. Upper panel: Representative 

immunoblots of GLT-1 and β-tubulin, a loading control, in the amygdala. Lower panel: 

Quantitative analysis of the immunoblots demonstrated significant upregulation of GLT-1 in 

the MS-153-treated group (50 mg/kg, i.p.; n=5) as compared to the ethanol vehicle-treated 

group (n=5). In addition, statistical analysis revealed a significant downregulation of GLT-1 

in the ethanol vehicle group as compared to the ethanol naïve vehicle group. Data are shown 

as mean ± SEM. (**p<0.01).
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Figure 3. 
Effect of MS-153 on xCT expression in the amygdala. Upper panel: Representative 

immunoblots of xCT and β-tubulin, a loading control, in the amygdala. Lower panel: 

Quantitative analysis of the immunoblots demonstrated significant upregulation of xCT in 

the MS-153 treatment group (50 mg/kg, i.p.; n=5) as compared to the ethanol vehicle group 

(n=5). Alternatively, statistical analysis revealed a significant downregulation of xCT in the 

ethanol vehicle group as compared to the ethanol naïve vehicle group. Data are shown as 

mean ± SEM. (*p<0.05; **p<0.01).
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Figure 4. 
Effect of MS-153 on GLT-1 expression in the hippocampus. Upper panel: Representative 

immunoblots of GLT-1 and β-tubulin, a loading control, in the Hipp. Lower panel: 

Quantitative analysis of the immunoblots demonstrated significant upregulation of GLT-1 in 

the MS-153 treatment group (50 mg/kg, i.p.; n=5) as compared to the ethanol vehicle group 

(n=5). Alternatively, statistical analysis revealed a significant downregulation of GLT-1 in 

the ethanol vehicle group as compared to the ethanol naïve vehicle group. Data are shown as 

mean ± SEM. (*p<0.05; ***p<0.01).
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Figure 5. 
Effect of MS-153 on xCT expression in hippocampus. Upper panel: Representative 

immunoblots of xCT and β-tubulin, a loading control, in the Hipp. Lower panel: 

Quantitative analysis of the immunoblots demonstrated significant upregulation of xCT in 

the MS-153 treatment group (50 mg/kg, i.p.; n=5) as compared to the ethanol vehicle group 

(n=5). Alternatively, statistical analysis showed a significant downregulation of xCT in the 

ethanol vehicle group as compared to the ethanol naïve vehicle group. Data are shown as 

mean ± SEM. (*p<0.05; **p<0.01).
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