2,053 research outputs found

    Testing for Multipartite Quantum Nonlocality Using Functional Bell Inequalities

    Full text link
    We show that arbitrary functions of continuous variables, e.g. position and momentum, can be used to generate tests that distinguish quantum theory from local hidden variable theories. By optimising these functions, we obtain more robust violations of local causality than obtained previously. We analytically calculate the optimal function and include the effect of nonideal detectors and noise, revealing that optimized functional inequalities are resistant to standard forms of decoherence. These inequalities could allow a loophole-free Bell test with efficient homodyne detection

    Optoelectronics Enabled Dense Patch Antenna Array for Future 5G Cellular Applications

    Get PDF
    The interconnection between densely-spaced antenna array elements to separated signal processors is a challenge in practical systems of future 5G applications. We present an interconnect concept based on optoelectronic link and a proof-of-concept experiment demonstrates successful 6-Gbps 64-QAM data transmission

    Large-Signal Circuit Model for Datacom VCSELs (Santa Fe)

    Get PDF
    We present a physics-based equivalent-circuit model for datacom VCSELs, with ambient temperature and self-heating effects accounted for. This circuit model is unique in accounting for carrier capture dynamics between active region continuum and quantum well bound states. OOK/PAM4 simulations are demonstrated at 25\ub0C and 85\ub0C

    Design of flexible ultrahigh-Q microcavities in diamond-based photonic crystal slabs

    Full text link
    We design extremely flexible ultrahigh-Q diamond-based double-heterostructure photonic crystal slab cavities by modifying the refractive index of the diamond. The refractive index changes needed for ultrahigh-Q cavities with Q 107Q ~ 10^7, are well within what can be achieved (Δn0.02\Delta n \sim 0.02). The cavity modes have relatively small volumes V<2(λ/n)3V<2 (\lambda /n)^3, making them ideal for cavity quantum electro-dynamic applications. Importantly for realistic fabrication, our design is flexible because the range of parameters, cavity length and the index changes, that enables an ultrahigh-Q is quite broad. Furthermore as the index modification is post-processed, an efficient technique to generate cavities around defect centres is achievable, improving prospects for defect-tolerant quantum architectures.Comment: 9 pages, 4 figures (1 in colour

    Ex vivo to in vivo model of malignant peripheral nerve sheath tumors for precision oncology

    Get PDF
    BACKGROUND: Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas that often develop in patients with neurofibromatosis type 1 (NF1). To address the critical need for novel therapeutics in MPNST, we aimed to establish an ex vivo 3D platform that accurately captured the genomic diversity of MPNST and could be utilized in a medium-throughput manner for drug screening studies to be validated in vivo using patient-derived xenografts (PDX). METHODS: Genomic analysis was performed on all PDX-tumor pairs. Selected PDX were harvested for assembly into 3D microtissues. Based on prior work in our labs, we evaluated drugs (trabectedin, olaparib, and mirdametinib) ex vivo and in vivo. For 3D microtissue studies, cell viability was the endpoint as assessed by Zeiss Axio Observer. For PDX drug studies, tumor volume was measured twice weekly. Bulk RNA sequencing was performed to identify pathways enriched in cells. RESULTS: We developed 13 NF1-associated MPNST-PDX and identified mutations or structural abnormalities in NF1 (100%), SUZ12 (85%), EED (15%), TP53 (15%), CDKN2A (85%), and chromosome 8 gain (77%). We successfully assembled PDX into 3D microtissues, categorized as robust (\u3e90% viability at 48 h), good (\u3e50%), or unusable (\u3c50%). We evaluated drug response to robust or good microtissues, namely MN-2, JH-2-002, JH-2-079-c, and WU-225. Drug response ex vivo predicted drug response in vivo, and enhanced drug effects were observed in select models. CONCLUSIONS: These data support the successful establishment of a novel 3D platform for drug discovery and MPNST biology exploration in a system representative of the human condition

    Gut microbiota-derived metabolite Trimethylamine-N-oxide (TMAO) and multiple health outcomes:an umbrella review and updated meta-analysis

    Get PDF
    BACKGROUND: Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced from dietary nutrients. Many studies have discovered that circulating TMAO levels are linked to a wide range of health outcomes. OBJECTIVES: This study aimed to summarize health outcomes related to circulating TMAO levels. METHODS: We searched Embase, Medline, Web of Science and Scopus databases from inception to 15 February 2022 to identify and update meta-analyses examining the associations between TMAO and multiple health outcomes. For each health outcome, we estimated the summary effect size, 95% prediction confidence interval (CI), between-study heterogeneity, evidence of small-study effects, and evidence of excess-significance bias. These metrics were used to evaluate the evidence credibility of the identified associations. RESULTS: This umbrella review identified 24 meta-analyses that investigated the association between circulating TMAO levels and health outcomes including all-cause mortality, cardiovascular diseases, diabetes mellitus, cancer, and renal function. We updated these meta-analyses by including a total of 82 individual studies in 18 unique health outcomes. Among them, 14 associations were nominally significant. After evidence credibility assessment, we found six (33%) associations (i.e., all-cause mortality, cardiovascular disease mortality, major adverse cardiovascular events, hypertension, diabetes mellitus, and glomerular filtration rate) to present highly suggestive evidence. CONCLUSIONS: TMAO might be a novel biomarker related to human health conditions including all-cause mortality, hypertension, cardiovascular disease, diabetes, cancer and kidney function. Further studies are needed to investigate whether circulating TMAO levels could be an intervention target for chronic disease

    Country-specific birth weight and length in type 1 diabetes high-risk HLA genotypes in combination with prenatal characteristics

    Get PDF
    Objective:To examine the relationship between high-risk human leukocyte antigen (HLA) genotypes for type 1 diabetes and birth size in combination with prenatal characteristics in different countries.Study Design:Four high-risk HLA genotypes were enrolled in the Environmental determinants of Diabetes in the Young study newborn babies from the general population in Finland, Germany, Sweden and the United States. Stepwise regression analyses were used to adjust for country, parental physical characteristics and environmental factors during pregnancy.Result:Regression analyses did not reveal differences in birth size between the four type 1 diabetes high-risk HLA genotypes. Compared with DQ 4/8 in each country, (1) DQ 2/2 children were heavier in the United States (P=0.028) mostly explained however, by parental weight; (2) DQ 2/8 (P=0.023) and DQ 8/8 (P=0.046) children were longer in Sweden independent of parents height and as well as (3) in the United States for DQ 2/8 (P=0.023), but again dependent on parental height.Conclusion:Children born with type 1 diabetes high-risk HLA genotypes have comparable birth size. Longitudinal follow-up of these children should reveal whether birth size differences between countries contribute to the risk for islet autoimmunity and type 1 diabetes.Journal of Perinatology advance online publication, 28 April 2011; doi:10.1038/jp.2011.26

    Fish Consumption and Ischemic stroke in Southern Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship between fish intake and stroke incidence has been inconsistent in previous Swedish studies. Here, we report the risk of stroke and fish intake in a cohort from southern Sweden.</p> <p>Findings</p> <p>Data were obtained from an already available population based case-control study where the cases were defined as incident first-time ischemic stroke patients. Complete data on all relevant variables were obtained for 2722 controls and 2469 cases. The data were analyzed with logistic regression analysis. Stroke risk decreased with fat fish intake ([greater than or equal to] 1/week versus <1/month) in both men and women; adjusted pooled Odds Ratio (OR) 0.69, 95% Confidence Interval (CI): 0.54-0.89. However, stroke risk for women increased with intake of lean fish; adjusted OR 1.63 (95% CI: 1.17-2.28), whereas there was no association with men's lean fish intake; adjusted OR 0.97(95% CI: 0.73-1.27). Fish intake was self-reported retrospectively, yielding uncertain exposure assessment and potential recall bias. The findings regarding lean fish could be explained by recall bias if an individual's inclination to report lean fish consumption depended on both disease status and sex. The fact that the association between fat fish intake and stroke was similar in men and women does not support such a differential in recall.</p> <p>Conclusions</p> <p>The results suggest fat fish intake to decrease ischemic stroke risk and lean fish intake to increase women's stroke risk. The inconsistent relationship between fish intake and stroke risk reported in previous studies is further stressed by the results of this study.</p
    corecore