
Twin Deep Convolutional Neural Network for
Example-based Image Colorization

Domonkos Varga1,2 and Tamás Szirányi1,3

1 MTA SZTAKI, Institute for Computer Science and Control
{varga.domonkos, sziranyi.tamas}@sztaki.mta.hu

2 Budapest University of Technology and Economics, Department of Networked
Systems and Services

3 Budapest University of Technology and Economics, Department of Material
Handling and Logistics Systems

Abstract. This paper deals with the colorization of grayscale images.
Recent papers have shown remarkable results on image colorization uti-
lizing various deep architectures. Unlike previous methods, we perform
colorization using a deep architecture and a reference image. Our archi-
tecture utilizes two parallel Convolutional Neural Networks which have
the same structure. One CNN, which uses the reference image, helps
the other CNN in color prediction for the input image. On the other
hand, the second CNN, which uses the input image, helps to identify
the areas which holds essential information about the color scheme of
the scene. Comprehensive experiments and qualitative and quantitative
evaluations were conducted on the images of SUN database and on other
images. Quantitative evaluations are based on Peak Signal-to-Noise Ra-
tio (PSNR) and on Quaternion Structural Similarity (QSSIM).
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1 Introduction

Automatic image colorization examines the problem how to add realistic colors
to grayscale images without any user intervention. It has some useful applications
such as colorizing old photographs or movies, artist assistance, visual effects and
color recovering. On the other hand, colorization is a heavily ill-posed problem.
In order to effectively colorize any images, the algorithm or the user should have
enough information about the scene’s semantic composition.

As pointed out in [16], image colorization is also a good model for a huge
number of applications where we want to take an arbitrary image and predict
values or different distributions at each pixel of the input image, exploiting
information only from this input image. This is a very common task in the
image processing and pattern recognition community.

To date, deep learning techniques have shown impressive results on both high-
level and low-level vision problems including image classification [1], removing
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phantom objects from point clouds [2], pedestrian detection [3], face detection
[4], handwritten character classification [5], photo adjustment [6], etc. In re-
cent years, deep learning based approaches appeared to address the colorization
problem.

Main contributions. Image colorization algorithms can be divided into
three classes: scribble-based, example-based, and learning-based. In this paper,
we show a possible solution that utilizes the advantages of example-based and
learning-based approaches. Unlike previous methods, we perform colorization
using a deep architecture and a reference image.

Paper organization. This paper is organized as follows. In Section 2, the
related and previous works are reviewed primarily focused on learning-based ap-
proaches. We describe our algorithm in Section 3. Section 4 shows experimental
results and analysis. The conclusions are drawn in Section 5.

2 Related works

Image colorization has been intensively studied since 1970’s. Broadly speak-
ing, the existing algorithms can be divided into three groups: scribble-based,
example-based, and learning-based approaches. In this section, we mainly con-
centrate on reviewing learning-based approaches.

Scribble-based approaches interpolate colors in the grayscale image based
on color scribbles produced by a user or an artist. Levin et al. [7] presented an
interactive colorization method which can be applied to still images and video
sequences as well. The user places color scribbles on the image and these scribbles
are propagated through the remaining pixels of the image. Huang et al. [8]
improved further this algorithm in order to reduce color blending at image edges.
Yatziv et al. [9] developed the algorithm of Levin et al. [7] in another direction.
The user can provide overlapping color scribbles. Furthermore, a distance metric
was proposed to measure the distance between a pixel and the color scribbles.
Combinational weights belong to each scribbles which were determined based on
the measured distance.

Example-based approaches require two images. These algorithms transfer
color information from a colorful reference image to a grayscale target image.
Reinhard et al. [10] applied simple statistical analysis to impose one image’s
color characteristics on another. Welsh et al. [11] utilized on pixel intensity val-
ues and different neighborhood statistics to match the pixels of the reference
image with the pixels of grayscale target image. On the other hand, Irony et
al. [12] determine first for each pixel which example segment it should learn its
color from. This carried out by applying a supervised classification algorithm
that considers the low-level feature space of each pixel neighborhood. Then each
color assignment is treated as color micro-scribbles which were the inputs to
Levin et al.’s [7] algorithm. Charpiat et al. [13] predicted the expected variation
of color at each pixel, thus defining a non-uniform spatial coherency criterion.
Then graph cuts were applied to maximize the probability of the whole colored
image at the global level. Gupta et al. [14] extracted features from the target
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and reference images at the resolution of superpixels. Based on different kind of
features, the superpixels of the reference image were matched with the superpix-
els of the target image and the color information was transfered to the center of
the superpixels of the target image with the help of micro color-scribbles. Then
these micro-scribbles were propagated through the target image.

Fig. 1: The architecture of the proposed method. The input and the reference CNN
have the same structure. First, only the reference CNN is trained then the input CNN
and the reference CNN are trained simultaneously. Information is transmitted from
input CNN to reference CNN and vica versa using element-wise addition operator to
certain convolutional blocks.

Learning-based approaches model the variables of the image colorization
process by applying different machine learning techniques and algorithms. Bugeau
and Ta [15] introduced a patch-based image colorization algorithm that takes
square patches around each pixel. Patch descriptors of luminance features were
extracted in order to train a model and a color prediction model with a gen-
eral distance selection strategy was proposed. Deshpande et al. [16] colorize an
image by optimizing a linear system that considers local predictions of color,
spatial consistency, and consistency with an overall histogram. Cheng et al. [17]
introduced a fully-automatic method based on a deep neural network which was
trained by hand-crafted features. Three levels of features were extracted from
each pixel of the training images: raw grayscale values, DAISY features [18], and
high-level semantic features.

In recent years, Convolutional Neural Network based approaches appeared
to tackle the colorization problem. Iizuka et al. [19] elaborated a colorization
method that jointly extracts global and local features from an image and then
merge them together. In [20], the authors proposed a fully automatic algorithm
based on VGG-16 [21] and a two-stage Convolutional Neural Network to provide
richer representation by adding semantic information from a preceding layer.
Furthermore, the authors proposed Quaternion Structural Similarity [22] for
quality evaluation. Zhang et al. [23] trained a Convolutional Neural Network
to map from a grayscale input to a distribution of quantized color values. This
algorithm was evaluated with the help of human participants asking them to
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distinguish between colorized and ground-truth images. In [24], the authors in-
troduced a patch-based colorization model using two different loss functions
in a vectorized Convolutional Neural Network framework. During colorization
patches are extracted from the image and are colorized independently. Guided
image filtering [25] is applied as postprocessing. Larsson et al. [26] processed a
grayscale image through VGG-16 [21] architecture and obtained hypercolumns
[27] as feature vectors. The system learns to predict hue and chroma distri-
butions for each pixel from its hypercolumn. Deshpande et al. [28] proposed
a conditional model for predicting multiple colorizations. The low dimensional
embedding of color fields was learned by a Variational Autoencoder. Similarly,
Cao et al. [29] worked with a conditional model but a Conditional Generative
Adversarial Network was utilized to model the distribution of real-world col-
ors. Limmer and Lensch [30] proposed a method for transferring the RGB color
spectrum to near-infrared images using deep multi-scale convolutional neural
networks. The transfer between RGB and near-infrared images is trained.

3 Our approach

The objectiveness of our framework is to combine example-based and learning-
based approaches in order to produce more realistic and plausible colors. To
capitalize on the advantages of example-based and learning-based methods as
well, we propose a novel architecture which is shown in Figure 1. Our architecture
consists of two parallel CNNs which are called Input CNN and Reference CNN.
These have the same structure. In the following, this structure is firstly described
and then the co-operation of the two networks is discussed.

We reimplemented the algorithm of [23] using Keras [31] deep learning li-
brary. This algorithm has some appealing properties. First of all, the authors
elaborated a class rebalancing method because the distribution of ab values in
natural images is biased towards low ab values. Second, colorization is treated as
multinomial classification instead of regression. This means that the ab output
space is quantized into bins with grid size 10 and keep the Q = 313 values which
are in gamut. For all details, we refer to [23].

We used SUN database [32] to compile our training database. We denote a
reference image by R and an input image by I. Formally, our database can be
defined as Li = {(Ii, Ri)|i = 1, ..., N} where N is the number of image pairs
and reference image Ri is semantically similar to input image Ii. That is why we
opted to utilize SUN database [32] since this dataset contains images grouped by
their semantic information. Figure 2 shows the empirical distribution of pixels
in ab space gathered from our database. Figure 3 illustrates the empirical and
smoothed empirical distribution of ab pairs in the quantized space. These curves
were determined and were applied in the training process based on the algorithm
of [23].

First, we train only the Reference CNN using only the Ri’s from our database.
We utilize ADAM optimizer [33] and early stopping [34] with the following
parameters: α = 0.0001, β1 = 0.9, β2 = 0.999, d = 0.0, and ε = 1e − 8 where
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Fig. 2: Empirical probability distribution of ab values in our database, shown in log
scale. The horizontal axis represents the b values and the vertical axis represents the
a values. The green dots denote the quantized ab value pairs.

α is the learning rate, ε is the fuzz factor, and d is the learning rate decay over
each update. Then the input CNN and the reference are trained simultaneously
using the whole Li = {(Ii, Ri)|i = 1, ..., N} database. As we mentioned the input
and the reference CNN have the same structure. Information is transmitted from
input CNN to reference CNN and vica versa using element-wise addition operator
to certain convolutional blocks (see Figure 1). The image pairs (Ii, Ri)

N
i=1 are

given to the input of the two CNNs. The values of the third convolutional block in
the Reference CNN are added element-wise to those in the Input CNN. Next, the
values of the fourth convolutional block in the input CNN are added to those in
the Reference CNN. This process repeats to the second last convolutional block.
In this process, we also applied ADAM optimizer and early stopping with the
above mentioned parameters. In this way, the color information of the reference
image is applied to facilitate the color prediction for the input image. On the
other hand, information from the input image helps to identify the areas which
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Fig. 3: Empirical (blue curve) and smoothed empirical distribution (red curve) of ab
pairs in the quantized space of our cartoon database.

holds essential information about the color scheme of the scene. The proposed
framework was trained on 60.000 image pairs of the SUN database.

As pointed out in many papers [20], [23], [24], [26], Euclidean loss function is
not an optimal solution because it will result in the so-called averaging problem.
Namely, the system will produce grayish sepia tone effects. That is why we use
a cross-entropy like loss function to compare predicted Ẑ ∈ [0, 1]H×W×Q against
the ground truth Z ∈ [0, 1]H×W×Q:

L(Ẑ,Z) = −
H,W∑

h=1,w=1

v(Zh,w)

Q=313∑
q=1

Zh,w,q · log(Ẑh,w,q), (1)

where Q = 313 is the number of quantized ab values (see Figure 2), v(·) is a
weighting term used to rebalance the loss based on color-class rarity, and H
and W denote the height and the width of the training images. The weighting
term v(·) is obtained using the smoothed empirical distribution of ab pairs in
the quantized space (see Figure 3). For all details of the weighting term, we refer
to [23].
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References. Input images. Our results. Zhang et al. [23]. Ground-truth.

Fig. 5: Colorized results. The first image is the reference image, the second is the
grayscale input, the third is our colorized result, and fourth is the result of [23], and
the fifth is the ground-truth image. Digital watermarks in the lower right corners were
embedded by the application of [23] (available: http://demos.algorithmia.com/colorize-
photos).
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References. Input images. Our results. Ground-truth.

Fig. 7: Colorized results.

Fig. 8: Comparison with state-of-the-art example-based colorization algorithms.

4 Experimental results

Figure 5 presents several colorization results obtained by our proposed method
with respect to the inputs, the ground-truth colorful images, and the refer-
ence images. Figure 5 also illustrates the results of [23] which were obtained
using their web application (available: http://demos.algorithmia.com/colorize-
photos). Note that the digital watermarks in the lower right corners were em-
bedded by this application. From this qualitative comparison, we can see that
our method is able to reduce visible artifacts, especially for detailed scenes, ob-
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Fig. 9: Peak Signal-to-Noise Ratio (PSNR) distribution. It can be seen that the pro-
posed method can improve the colorization accuracy.

jects with large color variances (e.g. building). The color filling is nearly flawless.
We could reduce the amount of false edges near the object boundaries. Figure 7
shows further results of our method.

Figure 8 shows a comparison with the major state-of-the-art example-based
colorization algorithms such as [11], [12], [13], and [14]. It can be seen that
we could produce more realistic and plausible colors than most state-of-the-art
example-based colorization algorithms.

Figure 9 presents the Peak Signal-to-Noise Ratio (PSNR) distribution of our
method, Cheng et al. [17], and Deshpande et al. [16]. We have measured the
PSNR distribution on 1500 test images from the SUN database [32]. Note that
we reimplemented for this experiment the method of [17] using Keras deep learn-
ing library [31]. In our experiment, we have applied a 33-dimensional semantic
feature vector for [17] and have trained the proposed deep neural network archi-
tecture using ADAM optimizer [33] and the images of SUN database. Besides, we
have used the source code (available: http://vision.cs.illinois.edu/projects/lscolor)
provided by Deshpande et al. [16]. Figure 9 illustrates that the proposed method
is able to improve colorization accuracy since it outperforms these two state-of-
the-art algorithms.

Unfortunately, there is no widely used quality metrics which clearly indicates
the quality of a colorization. Methodical quality evaluation by showing colorized
images to human observers is slow, expensive, and subjective. Empirically, we
have found that Quaternion Structural Similarity (QSSIM) [22] gives a good base
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Fig. 10: Quaternion Structural Similarity (QSSIM) distribution. It can be seen that the
proposed method can improve the colorization quality. A higher QSSIM value indicates
better image quality.

for quantitative evaluation. It is a theoretically well based measure which has
been accepted by the colorimetry research community as a potential qualification
value. We have measured the QSSIM distribution on 1500 test images from the
SUN database. Figure 10 presents the QSSIM distribution of our method, Cheng
et al. [17], and Deshpande et al. [16]. It can be seen that the proposed method
outperforms the two other state-of-the-art algorithms. A higher QSSIM values
indicates better image quality. This experiment was based on the source code
(available: http://www.ee.bgu.ac.il/˜kolaman/QSSIM) provided by Kolaman et
al. [22].

5 Conclusion

In this paper, we have introduced a novel framework which capitalizes on the
advantages of example-based and learning-based colorization approaches. Specif-
ically, we have shown a possible solution that combines the information between
two CNNs in order to help the input CNN in color prediction for the input
image. To this end, we have trained first a reference CNN which facilitates the
identification of the specific color scheme of the input scene. We have shown
that the semantic enhancement capability of a deep CNN can be switched into
a colorization scheme to result in an effective image analysis and interpretation
framework. The QSSIM method has been proved a superior measuring method
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for color modeling. There are many directions for further research. First, it is
worth to generalize the proposed method for arbitrary size input images. Another
direction of research would be automatizing the search for a suitable reference
image to an input image.

Acknowledgment

The research was supported by the Hungarian Scientific Research Fund (No.
OTKA 120499). We are very thankful to Levente Kovács for helping us with
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