3,737 research outputs found

    Toward Optimal Feature Selection in Naive Bayes for Text Categorization

    Full text link
    Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. We then introduce a new divergence measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure multi-distribution divergence for multi-class classification. Based on the JMH-divergence, we develop two efficient feature selection methods, termed maximum discrimination (MDMD) and MD−χ2MD-\chi^2 methods, for text categorization. The promising results of extensive experiments demonstrate the effectiveness of the proposed approaches.Comment: This paper has been submitted to the IEEE Trans. Knowledge and Data Engineering. 14 pages, 5 figure

    Detection of False Data Injection Attacks in Smart Grid under Colored Gaussian Noise

    Full text link
    In this paper, we consider the problems of state estimation and false data injection detection in smart grid when the measurements are corrupted by colored Gaussian noise. By modeling the noise with the autoregressive process, we estimate the state of the power transmission networks and develop a generalized likelihood ratio test (GLRT) detector for the detection of false data injection attacks. We show that the conventional approach with the assumption of Gaussian noise is a special case of the proposed method, and thus the new approach has more applicability. {The proposed detector is also tested on an independent component analysis (ICA) based unobservable false data attack scheme that utilizes similar assumptions of sample observation.} We evaluate the performance of the proposed state estimator and attack detector on the IEEE 30-bus power system with comparison to conventional Gaussian noise based detector. The superior performance of {both observable and unobservable false data attacks} demonstrates the effectiveness of the proposed approach and indicates a wide application on the power signal processing.Comment: 8 pages, 4 figures in IEEE Conference on Communications and Network Security (CNS) 201

    EEF: Exponentially Embedded Families with Class-Specific Features for Classification

    Full text link
    In this letter, we present a novel exponentially embedded families (EEF) based classification method, in which the probability density function (PDF) on raw data is estimated from the PDF on features. With the PDF construction, we show that class-specific features can be used in the proposed classification method, instead of a common feature subset for all classes as used in conventional approaches. We apply the proposed EEF classifier for text categorization as a case study and derive an optimal Bayesian classification rule with class-specific feature selection based on the Information Gain (IG) score. The promising performance on real-life data sets demonstrates the effectiveness of the proposed approach and indicates its wide potential applications.Comment: 9 pages, 3 figures, to be published in IEEE Signal Processing Letter. IEEE Signal Processing Letter, 201

    Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)

    Get PDF
    Recently, increasing works have proposed to drive evolutionary algorithms using machine learning models. Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality. To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables. Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm

    Characterization of the Covalently Bound Anionic Flavin Radical in Monoamine Oxidase A by Electron Paramagnetic Resonance

    Get PDF
    It was recently suggested that partially reduced monoamine oxidase (MAO) A contains an equilibrium mixture of an anionic flavin radical and a tyrosyl radical (Rigby, S. E.; et al. J. Biol. Chem. 2005, 280, 4627-4632). These observations formed the basis for a revised radical mechanism for MAO. In contrast, an earlier study of MAO B only found evidence for an anionic flavin radical (DeRose, V. J.; et al. Biochemistry 1996, 35, 11085-11091). To resolve the discrepancy, we have performed continuous-wave electron paramagnetic resonance at 94 GHz (W-band) on the radical form of MAO A. A comparison with D-amino acid oxidase (DAAO) demonstrates that both enzymes only contain anionic flavin radicals. Pulsed electron-nuclear double resonance spectra of the two enzymes recorded at 9 GHz (X-band) reveal distinct hyperfine coupling patterns for the two flavins. Density functional theory calculations show that these differences can be understood in terms of the difference at C8 of the isoalloxazine ring. DAAO contains a noncovalently bound flavin whereas MAO A contains a flavin covalently bound to a cysteinyl residue at C8. The similar electronic structures and hydrophobic environments of MAO and DAAO, and the similar structural motifs of their substrates suggest that a direct hydride transfer catalytic mechanism established for DAAO (Umhau, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12463-12468) should be considered for MAO

    Microstructural and material property changes in severely deformed Eurofer-97

    Full text link
    Severe plastic deformation changes the microstructure and properties of steels, which may be favourable for their use in structural components of nuclear reactors. In this study, high-pressure torsion (HPT) was used to refine the grain structure of Eurofer-97, a ferritic/ martensitic steel. Electron microscopy and X-ray diffraction were used to characterise the microstructural changes. Following HPT, the average grain size reduced by a factor of ∼\sim 30, with a marked increase in high-angle grain boundaries. Dislocation density also increased by more than one order of magnitude. The thermal stability of the deformed material was investigated via in-situ annealing during synchrotron X-ray diffraction. This revealed substantial recovery between 450 K - 800 K. Irradiation with 20 MeV Fe-ions to ∼\sim 0.1 dpa caused a 20% reduction in dislocation density compared to the as-deformed material. However, HPT deformation prior to irradiation did not have a significant effect in mitigating the irradiation-induced reductions in thermal diffusivity and surface acoustic wave velocity of the material. These results provide a multi-faceted understanding of the changes in ferritic/martensitic steels due to severe plastic deformation, and how these changes can be used to alter material properties.Comment: 59 pages, 19 figure

    Refinements for Bragg coherent X-ray diffraction imaging: electron backscatter diffraction alignment and strain field computation

    Get PDF
    Bragg coherent X-ray diffraction imaging (BCDI) allows the 3D measurement of lattice strain along the scattering vector for specific microcrystals. If at least three linearly independent reflections are measured, the 3D variation of the full lattice strain tensor within the microcrystal can be recovered. However, this requires knowledge of the crystal orientation, which is typically attained via estimates based on crystal geometry or synchrotron microbeam Laue diffraction measurements. Presented here is an alternative method to determine the crystal orientation for BCDI measurements using electron backscatter diffraction (EBSD) to align Fe–Ni and Co–Fe alloy microcrystals on three different substrates. The orientation matrix is calculated from EBSD Euler angles and compared with the orientation determined using microbeam Laue diffraction. The average angular mismatch between the orientation matrices is less than ∼6°, which is reasonable for the search for Bragg reflections. The use of an orientation matrix derived from EBSD is demonstrated to align and measure five reflections for a single Fe–Ni microcrystal via multi-reflection BCDI. Using this data set, a refined strain field computation based on the gradient of the complex exponential of the phase is developed. This approach is shown to increase accuracy, especially in the presence of dislocations. The results demonstrate the feasibility of using EBSD to pre-align BCDI samples and the application of more efficient approaches to determine the full lattice strain tensor with greater accuracy

    Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry

    Get PDF
    Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling pathways
    • …
    corecore