5,623 research outputs found

    Precision Electroweak Constraints on Hidden Local Symmetries

    Get PDF
    In this talk we discuss the phenomenology of models with replicated electroweak gauge symmetries, based on a framework with the gauge structure [SU(2) or U(1)] x U(1) x SU(2) x SU(2).Comment: 7 pages, talk given at SCGT0

    Fully Point-wise Convolutional Neural Network for Modeling Statistical Regularities in Natural Images

    Full text link
    Modeling statistical regularity plays an essential role in ill-posed image processing problems. Recently, deep learning based methods have been presented to implicitly learn statistical representation of pixel distributions in natural images and leverage it as a constraint to facilitate subsequent tasks, such as color constancy and image dehazing. However, the existing CNN architecture is prone to variability and diversity of pixel intensity within and between local regions, which may result in inaccurate statistical representation. To address this problem, this paper presents a novel fully point-wise CNN architecture for modeling statistical regularities in natural images. Specifically, we propose to randomly shuffle the pixels in the origin images and leverage the shuffled image as input to make CNN more concerned with the statistical properties. Moreover, since the pixels in the shuffled image are independent identically distributed, we can replace all the large convolution kernels in CNN with point-wise (111*1) convolution kernels while maintaining the representation ability. Experimental results on two applications: color constancy and image dehazing, demonstrate the superiority of our proposed network over the existing architectures, i.e., using 1/10\sim1/100 network parameters and computational cost while achieving comparable performance.Comment: 9 pages, 7 figures. To appear in ACM MM 201

    Minimum energy as the general form of critical flow and maximum flow efficiency and for explaining variations in river channel pattern

    Get PDF
    Although the Bélanger-Böss theorem of critical flow has been widely applied in open channel hydraulics, it was derived from the laws governing ideal frictionless flow. This study explores a more general expression of this theorem and examines its applicability to flow with friction and sediment transport. It demonstrates that the theorem can be more generally presented as the principle of minimum energy (PME), with maximum efficiency of energy use and minimum friction or minimum energy dissipation as its equivalents. Critical flow depth under frictionless conditions, the best hydraulic section where friction is introduced, and the most efficient alluvial channel geometry where both friction and sediment transport apply are all shown to be the products of PME. Because PME in liquids characterizes the stationary state of motion in solid materials, flow tends to rapidly expend excess energy when more than minimally demanded energy is available. This leads to the formation of relatively stable but dynamic energy-consuming meandering and braided channel planforms and explains the existence of various extremal hypotheses

    Hydrogenation of Mg film and Mg nanoblade array on Ti coated Si substrates

    Get PDF
    The hydrogenation of Mg film and Mg nanoblade array fabricated on Ti coated Si substrates has been studied and compared. The nanoblades start to absorb hydrogen at a temperature between 250 and 300 degrees C, which is much lower than 350 degrees C for Mg film. However, the saturated total hydrogen uptake in nanoblades is less than half of that in the film, resulting from MgO formation by air exposure. The nanoblade morphology with large surface area and small hydrogen diffusion length, and the catalytic effect of Ti layer, are two main reasons for the nanoblade hydrogenation behavior

    VO: Vaccine Ontology

    Get PDF
    Vaccine research, as well as the development, testing, clinical trials, and commercial uses of vaccines involve complex processes with various biological data that include gene and protein expression, analysis of molecular and cellular interactions, study of tissue and whole body responses, and extensive epidemiological modeling. Although many data resources are available to meet different aspects of vaccine needs, it remains a challenge how we are to standardize vaccine annotation, integrate data about varied vaccine types and resources, and support advanced vaccine data analysis and inference. To address these problems, the community-based Vaccine Ontology (VO, "http://www.violinet.org/vaccineontology":http://www.violinet.org/vaccineontology) has been developed through collaboration with vaccine researchers and many national and international centers and programs, including the National Center for Biomedical Ontology (NCBO), the Infectious Disease Ontology (IDO) Initiative, and the Ontology for Biomedical Investigations (OBI). VO utilizes the Basic Formal Ontology (BFO) as the top ontology and the Relation Ontology (RO) for definition of term relationships. VO is represented in the Web Ontology Language (OWL) and edited using the Protégé-OWL. Currently VO contains more than 2000 terms and relationships. VO emphasizes on classification of vaccines and vaccine components, vaccine quality and phenotypes, and host immune response to vaccines. These reflect different aspects of vaccine composition and biology and can thus be used to model individual vaccines. More than 200 licensed vaccines and many vaccine candidates in research or clinical trials have been modeled in VO. VO is being used for vaccine literature mining through collaboration with the National Center for Integrative Biomedical Informatics (NCIBI). Multiple VO applications will be presented.
&#xa
    corecore