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A B S T R A C T   

A timely and accurate estimation of body weight in finishing pigs is critical in determining profits by allowing 
pork producers to make informed marketing decisions on group-housed pigs while reducing labor and feed costs. 
This study investigated the usefulness of feeding behavior data in predicting the body weight of pigs at the 
finishing stage. We obtained data on 655 pigs of three breeds (Duroc, Landrace, and Large White) from 75 to 166 
days of age. Feeding behavior, feed intake, and body weight information were recorded when a pig visited the 
Feed Intake Recording Equipment in each pen. Data collected from 75 to 158 days of age were split into six slices 
of 14 days each and used to calibrate predictive models. LASSO regression and two machine learning algorithms 
(Random Forest and Long Short-term Memory network) were selected to forecast the body weight of pigs aged 
from 159 to 166 days using four scenarios: individual-informed predictive scenario, individual- and group- 
informed predictive scenario, breed-specific individual- and group-informed predictive scenario, and group- 
informed predictive scenario. We developed four models for each scenario: Model_Age included only age, 
Model_FB included only feeding behavior variables, Model_Age_FB and Model_Age_FB_FI added feeding behavior 
and feed intake measures on the basis of Model_Age as predictors. Pearson’s correlation, root mean squared 
error, and binary diagnostic tests were used to assess predictive performance. The greatest correlation was 0.87, 
and the highest accuracy was 0.89 for the individual-informed prediction, while they were 0.84 and 0.85 for the 
individual- and group-informed predictions, respectively. The least root mean squared error of both scenarios 
was about 10 kg. The best prediction performed by Model_FB had a correlation of 0.83, an accuracy of 0.74, and 
a root mean squared error of 14.3 kg in the individual-informed prediction. The effect of the addition of feeding 
behavior and feed intake data varied across algorithms and scenarios from a small to moderate improvement in 
predictive performance. We also found differences in predictive performance associated with the time slices or 
pigs used in the training set, the algorithm employed, and the breed group considered. Overall, this study’s 
findings connect the dynamics of feeding behavior to body growth and provide a promising picture of the 
involvement of feeding behavior data in predicting the body weight of group-housed pigs.   

1. Introduction 

In pork production, measuring pigs’ live weight to determine when 
to market is critical in reducing costs related to feeding, facilities, and 

labor at the finishing operation. Ranking pigs based on an optimum 
market weight is a challenging procedure with extensive economic re-
percussions associated with the discounted value of carcasses that are 
either too heavy or too light. Body weight (BW) is an essential outcome 
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used by producers to determine market-ready pigs. An accurate esti-
mation of BW before the finishing stage helps reduce losses associated 
with the sorting process (Que et al., 2016). Weighing pigs by running 
them through the scale provides the most accurate measurement of BW, 
but it requires a significant amount of time, and it may also induce in-
juries and stress for both animals and producers (Marinello et al., 2015). 
Although there are several approaches to measure the BW indirectly in 
swine, such as calculating the BW through girth size or estimating the 
BW by taking 3D pictures (Cominotte et al., 2020; Fernandes et al., 
2019; Kashiha et al., 2014), more alternatives are still needed to esti-
mate the BW with minimum human intervention and less technical 
limitations for different pig farms. 

With the growing availability of advanced communication and 
computing technologies, real-time data collection of feeding behavior 
and feed intake is becoming a valuable tool for maximizing productivity 
and efficiency in the swine industry. Several studies have addressed the 
association of feeding behavior and feed intake with growth perfor-
mance in swine (Andretta et al., 2016; Carcò et al., 2018; Hyun and Ellis, 
2002), cattle (Kelly et al., 2020; Silvestre et al., 2019; Taylor et al., 
1986), and sheep (Lewis and Emmans, 2020). Hyun and Ellis (2002) 
reported significant correlations between the number of feeder visits per 
day and BW (r = 0.34) in finishing pigs. They further found that feeder 
occupation time per day was significantly related to average daily gain 
(r = 0.30). Additionally, feeding behavior and feed intake have been 
found to be highly correlated with BW, specifically at the finishing stage 
in pigs (Carcò et al., 2018). Therefore, feeding behavior and feed intake 
data could be considered as potential predictors of BW to overcome the 
difficulties associated with direct measurement. 

Electronic feeding systems are widely used to record daily feed 
intake and feeding behavior in cattle (Chizzotti et al., 2015), swine 
(Brown-Brandl et al., 2013), and goats (Desnoyers et al., 2009). Among 
several types of electronic feeders, a stand-alone Feed Intake Recording 
Equipment system (FIRE; Osborne Industries Inc., Osborne, KS) is 
commonly used to measure the time and duration of feeding at each visit 
as well as the weight of food consumed by group-housed pigs (Casey 
et al., 2005). However, due to the high costs of feeders and especially for 
the maintenance of the load cells, which supply feed and measure the 
consumption in the system, the use of FIRE feeders is limited to nucleus 
farms for selection and breeding purposes instead of being used in 
commercial production settings (Jiao et al., 2014a, 2014b; Maselyne 
et al., 2015). Radio Frequency Identification (RFID) is a technology 
commonly used on commercial farms to identify individual pigs while 
feeding (Finkenzeller, 2010). Incorporating a high-frequency RFID 
sensor to general feeders allows measuring the feeding behavior, 
including duration of feeding, number of visits, as well as the interval 
between visits among group-housed pigs, with a much lower cost than 
using specially-designed feeding stations that measure both feeding 
behavior and feed intake (Maselyne et al., 2015). Moreover, costs in data 
collection can be further reduced by collecting the minimum amount of 
data required to make predictions. As such, identifying the usefulness of 
feeding behavior data measured by the RFID system, along with the 
minimum amount of data needed in predicting the BW of finishing pigs, 
is of great interest to producers. Therefore, while the prediction is per-
formed within a nucleus farm, results would be more useful in com-
mercial terminal line operations. 

Typically, in modeling feeding behavior and feed intake data, gen-
eral linear regression has been widely used (Kelly et al., 2010; Palmieri 
et al., 2017; Young et al., 2011). However, linear regression has diffi-
culties handling complex relationships between multiple input variables 
and a large amount of data generated by automated systems (Comrie, 
1997; Cross et al., 2018). In the last decade, machine learning (ML) 
approaches have emerged as powerful tools in genomic prediction 
(González-Recio et al., 2014), future performance prediction (Shahinfar 
and Kahn, 2018), image analysis (Kumar et al., 2017), and metagenomic 
prediction (Maltecca et al., 2019). Compared to classic linear regression 
models, ML approaches are better in handling noisy data and 

overcoming the issue of non-linearity among variables (Shahinfar and 
Kahn, 2018). Importantly, ML algorithms are better in capturing trends 
and patterns as well (Morota et al., 2018). 

Numerous studies reported differences in feeding patterns across 
commercial pig breeds during the growth period (Fernández et al., 2011; 
Labroue et al., 1999, 1994). Duroc and Landrace pigs have been found to 
spend more time feeding with fewer feeder visits during a day than Large 
White pigs (Fernández et al., 2011). A comparison of feeding behavior 
with a similar result between Landrace and Large White pigs was also 
reported by Labroue et al. (1994). Therefore, breed differences may 
need to be considered in the modeling and prediction of BW in swine. 

The objectives of this study were (i) to assess and compare the use-
fulness of feeding behavior data for BW prediction in growing pigs at the 
finishing stage, (ii) to determine the amount of growing-phase infor-
mation needed to achieve an adequate predictive performance during 
the grow-finish phase, (iii) to compare the performance of benchmark 
linear regression to machine learning algorithms, and (iv) to evaluate 
the predictive ability within breed groups. 

2. Materials and methods 

2.1. Animal and data collection 

Data used in this study were collected on pigs raised in a nucleus 
farm operated by Smithfield Premium Genetics (SPG; Rose Hill, NC, 
USA); therefore, animal use approval was not required. This study 
included 655 boars of either Duroc (DR; n = 221), Landrace (LR; n =
210), or Large White (LW; n = 224) breed. Boars were the result of the 
mating of 28 sires and 129 dams for DR, 27 sires and 148 dams for LR, 
and 45 sires and 161 dams for LW. During the growth trial, pigs were 
provided pelleted feed and received standard vaccinations. Boars 
weaned in the same week were grouped into 17 batches and were 
housed in pens equipped with single-space FIRE feeder (Osborne In-
dustries Inc., Osborne, KS), allocating 8–15 pigs per pen. Each FIRE 
feeder was equipped with a weighing scale (ACCU-ARM Weigh Race; 
Osborne Industries, Inc., Osborne, KS) to measure the BW of the pig 
visiting the feeder. There were 59 such pens located in 8 rooms. Pigs had 
24-hour access to the feeder. Performance tests started at the age of 75 
d and ended at 166 d. During this period, feed intake, feeder occupation 
time, BW, and animal identifier were recorded every time a pig visited 
the feeder. 

2.2. Data editing 

The feeding system recorded 497,164 visits of all the tested pigs. To 
achieve an accurate prediction of individual BW, data quality control 
was required to identify and remove feeder errors and outliers due to 
feeder malfunctions and animal-feeder interactions (Casey et al., 2005). 
Visits with feed intake larger than 2500 g or smaller than −100 g were 
removed as suggested by Casey et al. (2005). Feeding rate per visit (g/m) 
measures were calculated using feed intake per visit over that visit’s 
feeding time. Visits with a feeding rate per visit larger than 600 g/min 
were discarded as described by Eissen et al. (1998). If no feed intake and 
individual BW were recorded for all the pigs in a pen on a given day, the 
records of the pen on that day were also discarded. After edits, 486,163 
records were used for subsequent analyses. 

Records collected from feeders were converted into daily records for 
each pig, including the variables daily feed intake (DFI), daily occupa-
tion time (DOT), daily number of visits (DNV), and daily BW. Age was 
calculated as days from birth date to feeding event date. Room (n = 8), 
pen (n = 59), and batch (n = 17) were combined into a single variable 
(RPB). Data points were subsequently centered and scaled in this study 
using the ‘recipes’ packages in R (Kuhn and Wickham, 2018). 

To evaluate the sorting ability of models in a binary diagnostic test 
(pig having reached the desired market or not), a binary variable was 
also created on numeric BW using a cut-point of 129 kg, representing the 
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median BW of the last eight days of the study period. Pigs with BW 
greater or equal to 129 kg were assigned “1′′ and “0” otherwise. 

2.3. Prediction strategy and data split 

Considering the large between-animal and between-breed variations 
in feeding behavior and feed intake observed in group-housed growing 
pigs, several predictive scenarios were employed in this study: 1) 
individual-informed predictive scenario (I_PS), which used information 
of individual pig itself to calibrate the model and predict its future BW; 
2) individual- and group-informed predictive scenario (IG_PS), which 
included the information from the pigs in I_PS and additional pigs in the 
model training and made the prediction; 3) breed-specific individual- 
and group-informed predictive scenario (BS_IG_PS), which was similar 
to IG_PS setting but made the prediction within breed groups; 4) group- 
informed predictive scenario (G_PS), which used information of multi-
ple pigs similar to IG_PS to calibrate the model but the pigs whose BW 
was predicted were not included in the calibration set, a scenario using 
the “leave-one-group-out” validation strategy described by Bresolin and 
Dórea (2020). A diagram of the different predictive scenarios is depicted 
in Fig. 1. 

To investigate the predictive ability of feeding behavior and feed 
intake data, four models were constructed for each predictive scenario: 
Model_Age that only included age, Model_FB that only included feeding 
behavior (DOT and DNV) variables, Model_Age_FB that included both 
age and feeding behavior variables, and Model_Age_FB_FI that included 
age, feeding behavior, and feed intake (DFI) variables as predictors. A 
complete list of predictors used in these four models within each pre-
dictive scenario is summarized in Table 1. 

To evaluate the impact of feeding events which can vary in amount 
and age periods on predicting finishing-stage BW, data collected from 75 
to 158 d of age were split into six consecutive slices of 14 d each. In-
dividual slices or combinations of them (e.g. 1 and 2, 2 and 3, 1 and 2 

and 3, etc.) were used as training sets for I_PS and IG_PS. Pigs (n = 118) 
that had complete daily feeding events during the entire study period 
(75–166 d of age) were used in I_PS. To make model comparisons easier 
to interpret, data collected from 159 to 166 d of age of those 118 pigs 
were used to validate the prediction for all the predictive scenarios 
employed in this study. Descriptive statistics of variables for each 
training or validation set for I_PS are presented in Table 2. In addition to 
those 118 pigs, extra pigs that had complete daily feeding events during 
the period of each training set were also included to calibrate the model 
in IG_PS. The number of pigs employed and descriptive statistics of 
variables for each training or validation set for IG_PG are presented in 
Table 3. 

While for BS_IG_PS and G_PS, all the data collected from 75 to 158 
d of age were used in model training. For BS_IG_PS, pigs (DR: n = 75; LR: 
n = 120; LW: n = 79) that had complete daily feeding events during the 
period of the training set were used to train the model. Summary sta-
tistics of variables for each breed group is depicted in Fig. 2. For G_PS, 
the modeling training was performed based on the same group of pigs 
used in BS_IS_PS but excluded those 118 pigs from the validation set. 

2.4. Prediction algorithms 

2.4.1. Linear regression: LASSO regression 
Least Absolute Shrinkage and Selection Operator regression (LO), as 

proposed by Tibshirani (1996), was used as a benchmark method in this 
study. Compared to simple linear regression, LO can provide more ac-
curate prediction by reducing collinearity between predictors (Ham-
mami et al., 2012). Additionally, LO effectively prevents overfitting by 
penalizing the regression coefficient’s absolute value to be less than a 
shrinkage parameter λ (Ranstam and Cook, 2018). By choosing an 
optimal λ, LO aims to identify and exclude variables that are irrelevant 
to the prediction thus minimizing the complexity of the model and 
prediction error (Ranstam and Cook, 2018). The choice of λ is commonly 

Fig. 1. Demonstration of predictive scenarios employed in the present study. A. Individual-informed predictive scenario; B. Individual- and group-informed pre-
dictive scenario; C. Breed-specific individual- and group-informed predictive scenario; D. Group-informed predictive scenario. Colors represent three breeds: Duroc, 
Landrace, and Large White, respectively. Capital letters indicate different pig individuals. The figure was created with BioRender.com. 
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determined by cross-validation. Blocked k-fold cross-validation 
following time order has been suggested by Bergmeir and Benítez 
(2012) to accommodate time series data analysis. We employed this 
approach to determine the optimal value of λ in this study. To maintain 
computational efficiency, a blocked 3-fold cross-validation was applied 
to data that were partitioned sequentially by time order into three sets 
using the ‘caret’ package in R (Kuhn, 2012). The grid space for tuning λ 
was arbitrarily bound between −1 and 1, with 0.001 steps. The average 
of the λ values that achieved the minimum expected generalization error 
obtained from the 3-fold cross-validation was chosen as the optimal λ 
and fitted in the final model. The LO model was built using the ‘glmnet’ 
package in R (Hastie and Stanford, 2016). 

2.4.2. Machine learning: Random Forest 
We chose the Random Forest (RF) approach proposed by Ho (1995) 

as a representative algorithm in the machine learning space. RF is an 
improvement of the Bagging ensemble method, which combines the 
predictions of a group of machine learning algorithms (Breiman, 2001; 
Ho, 1995). The RF randomly selects subsets of the features, as well as 
builds many modified decision trees on bootstrap samples drawn from 
the training set in each iteration, overcoming the correlation issue be-
tween decision trees of the Bagging method and reducing the prediction 
error (Breiman, 2001). Hyperparameters of RF, including the number of 
trees, the number of features randomly sampled in each candidate split, 
the number of nodes on each tree, and sample size, can affect the ac-
curacy of the prediction. In this study, the hyperparameters were tuned 
through a grid search using the ‘ranger’ package in R (Wright and Zie-
gler, 2017). The performance of the model with different combinations 
of hyperparameters was evaluated by the root mean squared error 

(RMSE). A loop through each combination of hyperparameters was 
created with the number of trees ranging from 500 to 3500, by 500; the 
number of features randomly sampled ranging from 1 to 7, by 1; the 
node size ranging from 5 to 55, by 10; and sample size ranging from 60% 
to 80%, by 10%, to search a combination with the smallest RMSE. The 
optimal combination in this study was set as follows: (i) the number of 
trees was set equal to 1500; (ii) the number of features to make the best 
split was equal to one-third of the number of original features; (iii) the 
number of nodes for each tree was set equal to 5; (iv) the sample size was 
set equal to around 80% of the number of data points in the training set. 
The RF model was built using the package ‘randomForest’ in R (Liaw and 
Wiener, 2002). 

2.4.3. Machine learning: long short-term memory 
Long short-term memory (LSTM), a machine learning neural 

network from the Recurrent Neural Network family (RNN; Rumelhart 
et al., 1986), has been widely used to accurately predict time series data 
due to its ability in learning and storing long term patterns in a 
sequence-dependent order (Hochreiter and Schmidhuber, 1997). 
Compared to standard RNN, LSTM performs better in handling the 
flexible data structure and resolving the vanishing error flow problem of 
RNN by introducing multiplicative gates into the architecture of the 
network (Hochreiter and Schmidhuber, 1997). The LSTM contains one 
input layer, one or multiple stacking hidden layers with numbers of 
memory cell blocks, and one output layer (Hochreiter and Schmidhuber, 
1997). A memory cell block is composed of memory cells, which 
memorize the temporal state of the hidden layer, and multiplicative 
gates, which decide information flow in the network through an input 
gate, a forget gate (Gers et al., 1999), and an output gate (Hochreiter and 

Table 1 
Predictors included in the model (Model_Age, Model_FB, Model_Age_FB, and Model_Age_FB_FI) for each predictive scenario.a.  

Model Predictor 

Age DOT DNV DFI Breed RPB ID 

Model_Age 1,2,3,4    2,4 2,3,4 2,3 
Model_FB  1,2,3,4 1,2,3,4  2,4 2,3,4 2,3 
Model_Age_FB 1,2,3,4 1,2,3,4 1,2,3,4  2,4 2,3,4 2,3 
Model_Age_FB_FI 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 2,4 2,3,4 2,3  

a 1 = I_PS = Individual-informed predictive scenario; 2 = IG_PS = Individual- and group- informed predictive scenario; 3 = BS_IG_PS = Breed-specific individual- and 
group-informed predictive scenario; 4 = G_PS = Group-informed predictive scenario. 

Table 2 
Descriptive statistics of variables of pigs grouped into slices by age used for model training and validation for I_PS (n = 118).a  

Slice Start Age (d) End Age (d) BW (kg) DNV DOT (min) DFI (kg) Training or Validation 

1 75 88 41.4 ± 15.5 10.0 ± 5.0 76.1 ± 22.6 1.7 ± 0.5 Training 
2 89 102 52.9 ± 16.4 9.5 ± 4.4 77.3 ± 21.8 2.0 ± 0.6 Training 
3 103 116 68.0 ± 16.8 9.0 ± 4.3 76.9 ± 25.1 2.5 ± 0.8 Training 
4 117 130 87.7 ± 15.1 8.6 ± 4.3 70.9 ± 22.3 2.8 ± 0.9 Training 
5 131 144 104.2 ± 16.4 8.5 ± 4.6 69.6 ± 23.3 3.1 ± 0.8 Training 
6 145 158 119.6 ± 17.2 7.7 ± 3.9 63.4 ± 19.9 3.2 ± 0.8 Training 

1–2 75 102 47.2 ± 17.0 9.8 ± 4.7 76.7 ± 22.2 1.9 ± 0.6 Training 
2–3 89 116 60.5 ± 18.2 9.3 ± 4.3 77.1 ± 23.5 2.3 ± 0.7 Training 
3–4 103 130 77.8 ± 18.8 8.8 ± 4.3 73.9 ± 23.9 2.7 ± 0.8 Training 
4–5 117 144 96.0 ± 17.8 8.6 ± 4.4 70.2 ± 22.8 3.0 ± 0.9 Training 
5–6 131 158 111.9 ± 18.5 8.1 ± 4.3 66.5 ± 21.9 3.2 ± 0.8 Training 
1–3 75 116 54.1 ± 19.6 9.5 ± 4.6 76.8 ± 23.2 2.1 ± 0.7 Training 
2–4 89 130 69.5 ± 21.5 9.0 ± 4.3 75.1 ± 23.3 2.5 ± 0.8 Training 
3–5 103 144 86.6 ± 21.9 8.7 ± 4.4 72.5 ± 23.8 2.8 ± 0.9 Training 
4–6 117 158 103.8 ± 20.8 8.3 ± 4.3 68.0 ± 22.1 3.0 ± 0.9 Training 
1–4 75 130 62.5 ± 23.6 9.3 ± 4.5 75.3 ± 23.1 2.3 ± 0.8 Training 
2–5 89 144 78.2 ± 25.3 8.9 ± 4.4 73.7 ± 23.4 2.6 ± 0.9 Training 
3–6 103 158 94.9 ± 25.2 8.5 ± 4.3 70.2 ± 23.2 2.9 ± 0.9 Training 
1–5 75 144 70.8 ± 27.9 9.1 ± 4.6 74.2 ± 23.3 2.4 ± 0.9 Training 
2–6 89 158 86.5 ± 29.1 8.7 ± 4.3 71.6 ± 23.1 2.7 ± 0.9 Training 
1–6 75 158 79.0 ± 32.0 8.9 ± 4.5 72.4 ± 23.1 2.6 ± 0.9 Training 
7 159 166 130.5 ± 16.8 7.3 ± 3.8 56.7 ± 19.5 3.2 ± 0.9 Validation  

a I_PS = Individual-informed predictive scenario; BW = Body weight; DOT = Daily Occupation Time; DNV = Daily Number of Visits; DFI = Daily Feed Intake. 
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Table 3 
Descriptive statistics of variables of pigs grouped into slices by age used for model training and validation for IG_PS.a  

Slice Start Age (d) End Age (d) BW (kg) DNV DOT (min) DFI (kg) Training or Validation Number of Pigs 

DR LR LW Total 

1 75 88 40.1 ± 12.8 10.7 ± 5.5 76.8 ± 23.5 1.7 ± 0.5 Training 147 174 134 455 
2 89 102 50.9 ± 13.0 9.3 ± 4.4 76.5 ± 23.8 2.0 ± 0.6 Training 193 192 189 574 
3 103 116 67.1 ± 15.1 8.9 ± 4.2 75.6 ± 26.3 2.4 ± 0.7 Training 207 221 195 623 
4 117 130 83.7 ± 15.2 8.2 ± 4.1 71.2 ± 24.2 2.7 ± 0.7 Training 207 222 201 630 
5 131 144 101.0 ± 16.4 7.5 ± 3.9 67.7 ± 23.2 2.9 ± 0.8 Training 205 211 209 625 
6 145 158 117.3 ± 16.6 6.9 ± 3.6 62.3 ± 21.4 3.0 ± 0.9 Training 128 183 168 479 

1–2 75 102 46.1 ± 14.6 10.2 ± 5.1 77.0 ± 23.5 1.8 ± 0.6 Training 137 154 122 413 
2–3 89 116 58.8 ± 16.1 9.1 ± 4.3 76.0 ± 25.0 2.2 ± 0.7 Training 183 190 175 548 
3–4 103 130 75.5 ± 17.3 8.6 ± 4.2 73.4 ± 25.6 2.5 ± 0.7 Training 196 220 187 603 
4–5 117 144 92.3 ± 18.0 7.9 ± 4.1 69.5 ± 24.0 2.8 ± 0.8 Training 191 210 200 601 
5–6 131 158 109.6 ± 18.4 7.2 ± 3.7 65.3 ± 22.3 3.0 ± 0.8 Training 122 175 167 464 
1–3 75 116 53.2 ± 18.1 9.8 ± 4.9 76.7 ± 24.9 2.0 ± 0.7 Training 133 152 111 396 
2–4 89 130 66.7 ± 19.5 8.8 ± 4.2 74.4 ± 24.9 2.3 ± 0.7 Training 173 189 167 529 
3–5 103 144 83.9 ± 20.8 8.3 ± 4.2 71.6 ± 25.2 2.6 ± 0.8 Training 180 208 186 574 
4–6 117 158 101.3 ± 21.0 7.6 ± 3.9 67.4 ± 23.2 2.9 ± 0.8 Training 120 174 159 453 
1–4 75 130 60.4 ± 21.6 9.4 ± 4.8 75.3 ± 25.1 2.2 ± 0.8 Training 131 152 107 390 
2–5 89 144 75.1 ± 23.3 8.5 ± 4.2 72.8 ± 25.0 2.5 ± 0.8 Training 158 179 166 503 
3–6 103 158 92.8 ± 24.8 7.9 ± 4.0 69.2 ± 24.6 2.8 ± 0.8 Training 118 172 147 437 
1–5 75 144 68.6 ± 25.8 9.1 ± 4.8 73.8 ± 25.2 2.3 ± 0.8 Training 124 146 106 376 
2–6 89 158 83.8 ± 27.8 8.2 ± 4.1 70.8 ± 24.6 2.6 ± 0.8 Training 105 153 134 392 
1–6 75 158 77.3 ± 30.7 8.8 ± 4.7 71.6 ± 25.0 2.5 ± 0.9 Training 75 120 79 274 
7 159 166 130.5 ± 16.8 7.3 ± 3.8 56.7 ± 19.5 3.2 ± 0.9 Validation 16 56 46 118  

a IG_PS = Individual- and group-informed predictive scenario; DR = Duroc; LR = Landrace; LW = Large White; BW = Body weight; DOT = Daily Occupation Time; 
DNV = Daily Number of Visits; DFI = Daily Feed Intake. 

Fig. 2. Summary statistics of body weight, feeding behavior, and feed intake of Duroc (DR), Landrace (LR), and Large White (LW) during each period of ages. Data 
are presented as mean with SD error bar. 
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Schmidhuber, 1997). The input gate was designed to control the infor-
mation that can enter and be stored in the memory cells, while the 
output gate decides the information that should flow to other blocks in 
the network (Hochreiter and Schmidhuber, 1997). The forget gate was 
employed to adjust or empty the information contained in the memory 
cells according to the network state (Gers et al., 1999). With these 
special structures, LSTM possesses a learning process that cannot be 
affected by irrelevant or noisy information that may pass through 
memory cells and can effectively connect information with long time 
lags, resulting in a reliable prediction on time series data with long term 
dependencies (Malhotra et al., 2015). 

Similar to RF, an appropriate combination of hyperparameters is 
critical for the good performance of LSTM. Additionally, the computing 
time of LSTM is highly dependent on the choice of hyperparameters 
(Hua et al., 2019). The number of layers, the number of neurons per 
layer, learning rate, dropout rate, the number of iterations (epochs), and 
the optimizer chosen in training are the main hyperparameters affecting 
performance. A grid search for the number of layers and the number of 
neurons per layer was performed using RMSE as an indicator of an 
acceptable value choice. Preventing overfitting and seeking good 
computational efficiency, the optimal combination of hyperparameters 
with the smallest RMSE was set as follows in this study: (i) the number of 
layers was set equal to one; (ii) the number of neurons was set equal to 
100; (iii) learning rate was set equal to 0.003; (iv) drop rate was set 
equal to 0.2, which means 20% of the units to drop randomly from the 

linear transformation of the recurrent state (Gal and Ghahramani, 
2015); (v) the number of iterations (epochs) was set to 100; (vi) the 
Adaptive Moment Estimation (Kingma and Ba, 2015) was chosen as the 
optimizer for training to minimize the model’s error rate. The LSTM 
network was built using the ‘tfruns’ (Allaire, 2018) and ‘keras’ (Arnold, 
2017) packages in R. 

2.5. Predictive performance evaluation 

2.5.1. Pearson’s correlation and RMSE 
The predictive performance was evaluated through Pearson’s cor-

relation coefficient (r) and RMSE between numeric predicted and 
observed BW. They are given in the following equations, respectively. 

ri =
n (
∑n

j=1o ijpij) − (
∑n

j=1o ij)(
∑n

j=1pij)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n (
∑n

j=1o 2
ij) − (

∑n
j=1o ij)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n (
∑n

j=1p2
ij) − (

∑n
j=1pij)2

√

RMSEi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
j=1

(
pij − o ij

)2

n

√

where ri is the correlation coefficient and RMSEi is the error between 
observed and predicted BW for the ith day (i = 1, 2, …, 8) in the period of 
the validation set, oij is the observed BW and pij is the predicted BW of 
the jth animal (j = 1, 2, …, 118) on the ith day, and n is the total number of 
data points (n = 118) on the ith day. Averaged values of r and RMSE over 

Fig. 3. Flowchart of the experimental design for predicting the body weight of pigs at the finishing stage using FIRE feeder data through four models and three 
algorithms in each predictive scenario. 
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eight days (period of the validation set) were reported. 

2.5.2. Binary diagnostic ability 
The classification ability of models and algorithms to correctly sort 

pigs by a certain weight (129 kg) was assessed through the binary 
diagnostic test on the binary classification of BW (sensitivity, specificity, 
and accuracy). Within-day estimates of sensitivity (Se), specificity (Sp), 

and accuracy (Acc) were calculated using true-positive (TP), true- 
negative (TN), false-positive (FP), and false-negative (FN) cases 
derived from the confusion matrix. The Se refers to the abilities of 
models to correctly assign the pigs that have reached the desired weight. 
The Sp refers to the abilities of models to correctly assign the pigs that 
have not reached the weight. The Acc indicates how much proportion of 
pigs were correctly classified into the BW category. The Acc ranges from 
0 to 1, with 0.5 indicating no diagnostic ability, 0.7–0.8 as moderate, 
0.8–0.9 as excellent performance, and over 0.9 as the outstanding per-
formance of the test (Hosmer Jr et al., 2013). Averaged values of ac-
curacy over eight days (period of the validation set) were reported. 

Se = TP
TP + FN  

Sp = TN
TN + FP  

Acc = TP + TN
TP + FP + TN + FN 

A receiver operating characteristic (ROC) curve was used to depict 
the Se against 1-Sp over all possible decision thresholds ranging from 86 
kg to 168 kg for classifying the predicted BW in this study. A 45-degree 
diagonal line on the ROC plot is referred to a no-discrimination line 
between Se and 1-Sp. The Youden index (YI) was used as a diagnostic 
accuracy index indicating the point with the shortest distance to the 45- 
degree line on a ROC curve (Youden, 1950). The YI provides a way to 
select an optimal BW threshold, with which the algorithm demonstrates 
the best predictive performance and the least misclassification costs on 
the given data in this study (Fluss et al., 2005). 

YI = max{Sp−1+Se}
An overall depiction of the experimental design is provided in Fig. 3. 

3. Results 

In this study, we evaluated the usefulness of feeding behavior data 
for finishing-stage BW prediction in swine. For this purpose, we set up 
two prediction scenarios (I_PS and IG_PS) and used models that varied in 
the inclusion of age, feeding behavior, and feed intake variables. To 
determine the optimal amount of information necessary to obtain reli-
able predictions, we employed different amounts of longitudinal data in 
the training sets. Within each scenario, three algorithms were used as 
competing alternatives: LO, RF, and LSTM. Furthermore, we investi-
gated the performance of the prediction made for DR, LR, and LW breed 
groups independently in BS_IG_PS. Lastly, we evaluated the predictive 
performance of models to predict the BW of different pigs in G_PS. 

Table 2 and Table 3 summarize the mean and standard deviation of 
BW, DNV, DOT, and DFI of pigs for I_PS and IG_PS, respectively. In 
general, as pigs matured and gained weight, DFI increased, while DNV 
and DOT decreased. The distribution of BW of pigs in the validation set is 
depicted in Fig. S1. 

3.1. Effectiveness of involving feeding behavior and feed intake in BW 
prediction 

Overall, the I_PS achieved better predictive performances than IG_PS 
in terms of correlation (r), accuracy, sensitivity, and specificity, while 
IG_PS had smaller RMSE in most of the predictions compared to I_PS. 
Under each scenario, the predictive ability when only feeding behavior 
variables served as the predictors was evaluated against the predictive 
ability of models that also used age and feed intake. 

Fig. 4 depicts r for each model across algorithms within I_PS and 
IG_PS. Regardless of which algorithm or training set was used, correla-
tions ranged from −0.01 to 0.85 and 0.12 to 0.84 for Model_Age, from 
0.25 to 0.83 and 0.17 to 0.83 for Model_FB, from 0.02 to 0.86 and 0.15 
to 0.84 for Model_Age_FB_FI, from 0.01 to 0.87 and 0.03 to 0.84 for 

Fig. 4. Averaged Pearson’s Correlation Coefficient (r) between predicted and 
observed BW of Model_Age, Model_FB, Model_Age_FB, and Model_Age_FB_FI 
using LASSO Regression (LO), Random Forest (RF), and Long Short-term 
Memory (LSTM) network with various information from the growth period as 
input. A. Correlation for individual-informed predictive scenario (I_PS); B. 
Correlation for individual- and group-informed predictive scenario (IG_PS). 
Colors represent three algorithms. Correlations are indicated in both size and 
label of bubbles. 
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Table 4 
Summary of RMSE (kg). Data are presented as mean (SD) of 8 days in the validation period for I_PS and IG_PS. The smallest RMSE values for each algorithm under each 
model were highlighted in bold.  

Train 
Slice 

Individual-informed Predictive Scenario 

LO RF LSTM 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

1 140.0 
(4.4) 

91.9 
(2.7) 

139.0 
(4.2) 

141.0 
(3.9) 

88.8 
(2.7) 

91.7 
(2.8) 

88.1 
(2.7) 

87.7 
(2.8) 

84.2 
(2.7) 

92.0 
(2.9) 

84.0 
(2.7) 

81.2 
(2.7) 

2 46.8 
(1.7) 

79.6 
(2.6) 

48.2 
(1.8) 

48.8 
(1.7) 

77.8 
(2.7) 

79.7 
(2.8) 

76.6 
(2.7) 

76.5 
(2.8) 

71.5 
(2.8) 

79.5 
(2.6) 

70.2 
(2.7) 

68.8 
(2.8) 

3 43.8 
(2.8) 

64.0 
(2.9) 

41.2 
(2.7) 

42.9 
(2.2) 

61.3 
(2.7) 

64.5 
(2.8) 

59.2 
(2.8) 

59.1 
(2.9) 

49.1 
(2.1) 

64.4 
(2.8) 

42.1 
(2.1) 

40.1 
(1.9) 

4 31.0 
(1.4) 

45.8 
(2.7) 

31.4 
(1.4) 

30.8 
(1.4) 

43.9 
(2.7) 

46.1 
(2.7) 

42.7 
(2.6) 

42.6 
(2.7) 

41.1 
(2.9) 

45.7 
(2.7) 

37.5 
(2.7) 

35.8 
(2.7) 

5 21.4 
(2.7) 

30.4 
(2.4) 

21.6 
(2.7) 

20.5 
(2.6) 

27.0 
(2.7) 

30.0 
(2.5) 

25.5 
(2.7) 

25.6 
(2.7) 

22.6 
(3.5) 

30.1 
(2.6) 

22.0 
(3.4) 

21.7 
(3.1) 

6 11.0 
(2.4) 

14.6 
(3.1) 

11.1 
(2.5) 

11.2 
(2.6) 

12.6 
(3.0) 

14.3 
(3.2) 

11.3 
(3.1) 

11.3 
(3.1) 

10.7 
(2.2) 

14.3 
(3.1) 

10.6 
(2.2) 

10.3 
(2.4) 

1-2 63.4 
(2.1) 

85.5 
(2.9) 

58.2 
(1.7) 

59.7 
(1.6) 

81.3 
(2.7) 

85.6 
(3.0) 

77.6 
(2.8) 

77.0 
(2.9) 

60.0 
(2.3) 

85.6 
(3.1) 

59.3 
(2.4) 

59.5 
(2.5) 

2-3 29.8 
(1.6) 

71.9 
(2.6) 

30.1 
(1.5) 

29.8 
(1.3) 

65.9 
(2.7) 

71.5 
(2.7) 

60.2 
(2.7) 

59.6 
(2.8) 

39.8 
(2.3) 

71.8 
(2.7) 

36.3 
(2.2) 

35.3 
(2.0) 

3-4 27.9 
(1.5) 

54.0 
(2.7) 

27.0 
(1.5) 

25.7 
(1.4) 

49.6 
(2.7) 

54.3 
(2.6) 

43.6 
(2.6) 

43.2 
(2.7) 

32.3 
(1.8) 

53.6 
(2.6) 

32.1 
(1.8) 

30.9 
(1.9) 

4-5 19.4 
(1.8) 

37.4 
(2.8) 

19.3 
(1.7) 

19.4 
(1.6) 

31.6 
(2.7) 

37.2 
(3.0) 

26.4 
(2.8) 

26.1 
(2.8) 

18.5 
(2.6) 

36.9 
(2.9) 

18.9 
(2.5) 

19.3 
(2.6) 

5-6 12.0 
(2.5) 

20.4 
(3.0) 

11.8 
(2.5) 

11.8 
(2.4) 

16.6 
(2.9) 

20.4 
(3.0) 

11.8 
(3.1) 

11.7 
(3.1) 

10.8 
(2.2) 

20.2 
(2.9) 

11.3 
(2.3) 

11.3 
(2.3) 

1-3 36.1 
(1.5) 

78.1 
(2.9) 

35.8 
(1.6) 

35.8 
(1.4) 

70.0 
(2.7) 

77.9 
(3.1) 

60.9 
(2.8) 

59.8 
(2.9) 

34.2 
(2.1) 

78.2 
(3.2) 

34.1 
(1.9) 

35.8 
(1.6) 

2-4 24.5 
(1.3) 

61.9 
(2.5) 

24.7 
(1.2) 

24.0 
(1.1) 

54.1 
(2.7) 

61.4 
(2.5) 

43.9 
(2.6) 

43.3 
(2.8) 

24.7 
(1.1) 

61.8 
(2.6) 

25.2 
(1.1) 

25.5 
(1.3) 

3-5 17.9 
(1.5) 

44.2 
(2.9) 

17.8 
(1.6) 

17.0 
(1.4) 

37.6 
(2.7) 

44.7 
(2.8) 

27.0 
(2.7) 

26.5 
(2.8) 

20.6 
(2.3) 

44.0 
(2.7) 

20.0 
(2.0) 

20.2 
(2.0) 

4-6 11.4 
(2.2) 

27.4 
(3.3) 

11.6 
(2.3) 

11.7 
(2.1) 

21.1 
(2.9) 

27.0 
(3.5) 

12.2 
(3.2) 

11.9 
(3.2) 

11.5 
(2.1) 

27.0 
(3.0) 

11.6 
(2.3) 

11.9 
(2.3) 

1-4 25.5 
(1.2) 

68.1 
(2.8) 

25.2 
(1.1) 

25.2 
(1.1) 

58.3 
(2.7) 

68.0 
(2.9) 

44.5 
(2.7) 

43.6 
(2.8) 

25.0 
(1.4) 

68.9 
(3.1) 

25.2 
(1.4) 

26.8 
(1.4) 

2-5 17.8 
(1.3) 

51.5 
(2.5) 

17.9 
(1.4) 

17.2 
(1.3) 

42.6 
(2.7) 

51.2 
(2.8) 

27.4 
(2.7) 

26.8 
(2.8) 

17.6 
(1.6) 

51.2 
(2.5) 

18.0 
(1.4) 

19.1 
(1.7) 

3-6 11.8 
(2.0) 

34.2 
(2.9) 

11.7 
(2.1) 

11.4 
(1.9) 

26.8 
(2.9) 

33.6 
(3.2) 

12.5 
(3.2) 

12.1 
(3.2) 

12.3 
(2.1) 

33.4 
(2.7) 

12.6 
(2.0) 

12.7 
(2.2) 

1-5 18.2 
(1.1) 

58.0 
(2.7) 

18.0 
(1.0) 

17.3 
(0.8) 

46.8 
(2.7) 

57.7 
(3.1) 

27.9 
(2.8) 

26.9 
(2.9) 

18.7 
(1.4) 

58.0 
(3.0) 

18.4 
(1.4) 

20.7 
(1.7) 

2-6 12.2 
(1.8) 

40.7 
(2.5) 

12.0 
(1.8) 

11.6 
(1.7) 

31.9 
(2.8) 

39.9 
(3.2) 

12.8 
(3.1) 

12.4 
(3.2) 

13.0 
(1.7) 

40.3 
(2.3) 

13.2 
(1.7) 

13.8 
(1.8) 

1-6 12.5 
(1.5) 

47.0 
(2.7) 

12.3 
(1.5) 

11.7 
(1.5) 

36.3 
(2.8) 

45.6 
(3.7) 

13.1 
(3.2) 

12.5 
(3.3) 

14.1 
(1.5) 

46.4 
(3.0) 

13.9 
(1.6) 

14.3 
(1.7)  

Train 
Slice 

Individual- and Group-informed Predictive Scenario 

LO RF LSTM 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

1 21.5 
(0.5) 

91.3 
(2.7) 

21.7 
(0.5) 

24.7 
(0.8) 

87.9 
(2.7) 

91.4 
(2.8) 

87.2 
(2.7) 

87.2 
(2.7) 

61.5 
(2.3) 

91.6 
(2.8) 

57.4 
(2.4) 

58.1 
(2.3) 

2 25.0 
(0.6) 

79.6 
(2.6) 

25.1 
(0.6) 

23.8 
(0.6) 

76.2 
(2.7) 

79.9 
(2.6) 

75.8 
(2.7) 

75.8 
(2.7) 

41.0 
(2.1) 

79.7 
(2.7) 

39.8 
(1.8) 

36.7 
(1.8) 

3 20.2 
(0.5) 

65.3 
(2.6) 

20.2 
(0.5) 

18.3 
(0.3) 

59.0 
(2.7) 

65.7 
(2.6) 

58.4 
(2.6) 

58.4 
(2.6) 

30.9 
(1.9) 

64.5 
(2.8) 

34.9 
(2.2) 

35.5 
(2.4) 

4 17.0 
(0.3) 

46.1 
(2.5) 

17.0 
(0.3) 

15.3 
(0.3) 

42.3 
(2.5) 

46.5 
(2.6) 

41.9 
(2.5) 

41.9 
(2.5) 

24.7 
(1.6) 

46.3 
(2.7) 

24.6 
(1.4) 

23.5 
(1.5) 

5 15.7 
(0.5) 

29.8 
(2.4) 

15.8 
(0.5) 

14.7 
(0.5) 

24.6 
(2.5) 

30.2 
(2.4) 

24.5 
(2.4) 

24.5 
(2.4) 

12.0 
(1.0) 

29.4 
(2.6) 

13.6 
(1.1) 

16.6 
(2.2) 

6 11.0 
(1.1) 

15.5 
(2.5) 

10.9 
(1.1) 

10.7 
(1.2) 

13.8 
(1.7) 

15.2 
(2.4) 

13.5 
(1.8) 

13.5 
(1.8) 

9.7 
(1.6) 

14.4 
(2.8) 

9.6 
(1.6) 

9.4 
(1.6) 

1-2 27.6 
(0.7) 

85.3 
(2.7) 

27.3 
(0.7) 

27.7 
(0.9) 

76.9 
(2.7) 

85.4 
(2.7) 

76.5 
(2.7) 

76.5 
(2.7) 

46.9 
(1.8) 

85.2 
(2.9) 

47.4 
(2.2) 

47.5 
(1.8) 

2-3 19.1 
(0.4) 

72.2 
(2.6) 

19.1 
(0.5) 

18.4 
(0.4) 

60.3 
(2.7) 

72.5 
(2.6) 

59.4 
(2.6) 

59.4 
(2.6) 

28.8 
(1.6) 

71.8 
(2.7) 

20.6 
(1.0) 

26.1 
(1.3) 

3-4 17.7 
(0.4) 

54.9 
(2.5) 

17.7 
(0.4) 

16.1 
(0.3) 

43.0 
(2.5) 

55.2 
(2.7) 

42.7 
(2.5) 

42.7 
(2.5) 

20.5 
(1.1) 

53.8 
(2.7) 

18.4 
(0.5) 

16.6 
(0.4) 

4-5 16.1 
(0.4) 

37.3 
(2.4) 

16.1 
(0.4) 

14.8 
(0.4) 

25.2 
(2.5) 

37.8 
(2.5) 

25.1 
(2.5) 

25.1 
(2.5) 

15.1 
(1.1) 

38.6 
(2.6) 

15.3 
(1.1) 

14.4 
(1.0) 

5-6 

(continued on next page) 

Y. He et al.                                                                                                                                                                                                                                       



Computers and Electronics in Agriculture 184 (2021) 106085

9

Model_Age_FB_FI in I_PS and IG_PS, respectively. For both I_PS and 
IG_PS, a small and non-consistent difference in correlations was 
observed between Model_Age and Model_Age_FB using the LO algo-
rithm. When using the LSTM algorithm, we failed to observe a clear 
pattern in the change of the correlation when going from Model_Age to 
Model_Age_FB for both scenarios. The biggest difference between these 
models was found for the RF algorithm, where an increase in correlation 
was mostly observed when feeding behavior variables were included in 
the model in addition to the predictors included in Model_Age. The in-
crease in correlation for this algorithm ranged from 0.01 to 0.12 and 
0.01 to 0.17 for the I_PS and IG_PS scenarios, respectively. 

Table 4 summarizes the mean RMSE with SD for each model across 
algorithms within I_PS and IG_PS. Regardless of which algorithm or 
training set was used, RMSE ranged from 10.7 to 140 kg and 9.7 to 87.9 
kg for Model_Age, from 14.3 to 92.0 kg and 13.8 to 91.6 kg for Mod-
el_FB, from 10.6 to 139 kg and 9.6 to 87.2 kg for Model_Age_FB, from 
10.3 to 141 kg and 9.4 to 87.2 kg for Model_Age_FB_FI in I_PS and IG_PS, 
respectively. We observed a small to moderate decrease in RMSE values 
of the most predictions when we included feeding behavior and feed 
intake variables in the model in addition to the predictors included in 
the Model_Age. For I_PS, the decrease ranged from 0.1 to 5.2 kg and 0.2 
to 3.7 kg using LO, from 0.7 to 23.2 kg and 1.1 to 23.8 kg using RF, and 
from 0.1 to 7.0 kg and 0.4 to 9.0 kg for LSTM obtained by the Mod-
el_Age_FB and Model_Age_FB_FI, respectively. For IG_PS, the decrease 
ranged from 0.1 to 0.3 kg and 0.1 to 1.9 kg using LO, from 0.1 to 3.1 kg 
and 0.1 to 3.3 kg using RF, and from 0.1 to 8.2 kg and 0.3 to 4.3 kg for 
LSTM obtained by the Model_Age_FB and Model_Age_FB_FI, respec-
tively. Similar results were observed in terms of Relative Absolute Error 
(Table S1), which is another way to evaluate the performance of a 
predictive model with a value less than one indicating that the predic-
tion is reliable. The bias calculated as the mean difference between 
predicted and observed BW is presented in Table S2. 

Fig. 5 reports the mean accuracy with SD of each model across al-
gorithms for I_PS and IG_PS, indicating the proportion of correctly 
classified pigs using a 129 kg weight threshold. Regardless of which 
algorithm or training set was used, accuracy ranged from 0.48 to 0.89 
and 0.47 to 0.85 for Model_Age, from and 0.49 to 0.74 and 0.49 to 0.70 

for Model_FB, from 0.48 to 0.89 and 0.47 to 0.85 for Model_Age_FB, 
from 0.48 to 0.89 and 0.49 to 0.85 for Model_Age_FB_FI in I_PS and 
IG_PS, respectively. Within algorithms for the prediction that used all 
the time slices (1–6) as the training set, the addition of feeding behavior 
variables in the model boosted accuracy from 0.57 to 0.63 for RF and 
from 0.71 to 0.74 for LSTM in IG_PS, while for I_PS, accuracy increased 
from 0.79 to 0.80, 0.50 to 0.75, and 0.70 to 0.73 for LO, RF, and LSTM, 
respectively. The inclusion of feed intake by Model_Age_FB_FI further 
increased the accuracy of predictions trained by all the time slices (1–6) 
in both predictive scenarios. 

The ROC curves for the predictions using all the time slices (1–6) as 
the training set for each model across three algorithms are depicted in 
Fig. 6. Optimal BW cut-off point (YI score) ranged from 95 to 130 kg and 
118 to 134 kg for Model_Age, from 90 to 98 kg and 88 to 101 kg for 
Model_FB, from 119 to 130 kg and 122 to 134 kg for Model_Age_FB, from 
117 to 130 kg and 119 to 132 kg for Model_Age_FB_FI in I_PS and IG_PS, 
respectively. 

3.2. Varying the amount of information along the growth period in BW 
prediction 

The performance was evaluated across 21 predictions with different 
training sets for each model to investigate the effects of the amount and 
time dependency of data contributing to the prediction. Results are 
demonstrated in Fig. 4, Table 4, and Fig. 5 in terms of correlation, RMSE, 
and accuracy. As expected, training sets that were close to the predicted 
period were found to be more informative in BW prediction in our study. 
The amount of information in the training set affected the predictive 
performance as well. 

3.3. Algorithms performance comparison 

Three algorithms, LO as the benchmark method, RF and LSTM from 
the machine learning field, were compared in predicting sequential BW 
in our study. Generally, compared under the same model setting, RF 
tended to have greater correlations in most predictions than LO and 
LSTM in I_PS (Fig. 4A), while LSTM had greater correlations than the 

Table 4 (continued ) 

Train 
Slice 

Individual- and Group-informed Predictive Scenario 

LO RF LSTM 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

Model 
Age 

Model 
FB 

Model 
Age_FB 

Model 
Age_FB_FI 

12.5 
(0.7) 

21.9 
(2.4) 

12.4 
(0.7) 

11.9 
(0.8) 

14.3 
(1.7) 

21.7 
(2.5) 

13.7 
(1.8) 

13.8 
(1.8) 

9.7 
(1.6) 

20.4 
(2.7) 

10.1 
(1.9) 

9.7 
(1.7) 

1-3 21.2 
(0.5) 

78.0 
(2.6) 

21.1 
(0.5) 

21.1 
(0.5) 

61.7 
(2.7) 

77.8 
(2.7) 

60.2 
(2.6) 

60.2 
(2.6) 

27.2 
(1.0) 

78.2 
(2.9) 

29.4 
(1.2) 

29.0 
(1.2) 

2-4 17.6 
(0.4) 

62.3 
(2.5) 

17.6 
(0.4) 

16.7 
(0.4) 

44.4 
(2.6) 

62.4 
(2.6) 

44.0 
(2.5) 

44.0 
(2.5) 

19.1 
(0.6) 

60.6 
(2.6) 

20.9 
(1.0) 

17.9 
(0.4) 

3-5 16.6 
(0.3) 

45.3 
(2.4) 

16.6 
(0.3) 

15.3 
(0.3) 

25.9 
(2.6) 

45.2 
(2.6) 

25.7 
(2.5) 

25.8 
(2.6) 

13.7 
(1.1) 

43.2 
(2.7) 

15.0 
(0.8) 

15.3 
(0.9) 

4-6 13.5 
(0.5) 

28.9 
(2.3) 

13.5 
(0.5) 

12.6 
(0.6) 

14.7 
(1.8) 

28.5 
(2.5) 

14.1 
(1.9) 

14.0 
(1.9) 

11.6 
(2.0) 

27.3 
(2.9) 

10.1 
(1.6) 

11.0 
(1.8) 

1-4 18.3 
(0.4) 

68.3 
(2.5) 

18.2 
(0.4) 

17.9 
(0.4) 

45.9 
(2.6) 

67.9 
(2.7) 

44.4 
(2.6) 

44.5 
(2.6) 

20.1 
(0.8) 

68.4 
(2.8) 

22.7 
(1.1) 

25.9 
(1.2) 

2-5 16.8 
(0.3) 

52.6 
(2.4) 

16.8 
(0.3) 

15.7 
(0.3) 

28.1 
(2.6) 

51.8 
(2.5) 

27.3 
(2.6) 

27.4 
(2.6) 

16.1 
(1.0) 

51.4 
(2.6) 

16.2 
(0.9) 

17.4 
(1.1) 

3-6 14.6 
(0.4) 

36.2 
(2.3) 

14.5 
(0.4) 

13.5 
(0.4) 

15.6 
(1.9) 

35.1 
(2.6) 

14.5 
(1.9) 

14.5 
(1.9) 

11.1 
(1.5) 

32.8 
(2.9) 

11.5 
(1.6) 

11.3 
(1.6) 

1-5 16.8 
(0.3) 

58.6 
(2.4) 

16.8 
(0.3) 

16.1 
(0.3) 

30.2 
(2.6) 

57.1 
(2.8) 

28.0 
(2.6) 

28.0 
(2.6) 

17.6 
(0.8) 

57.3 
(2.8) 

18.5 
(1.1) 

18.9 
(0.9) 

2-6 15.1 
(0.3) 

43.2 
(2.3) 

15.1 
(0.3) 

14.0 
(0.4) 

17.3 
(2.0) 

41.3 
(2.5) 

15.4 
(2.0) 

15.3 
(2.0) 

11.5 
(1.6) 

40.2 
(2.6) 

11.9 
(1.4) 

12.0 
(1.3) 

1-6 15.1 
(0.3) 

49.0 
(2.2) 

15.1 
(0.3) 

14.3 
(0.3) 

19.0 
(2.1) 

46.5 
(2.7) 

15.9 
(2.1) 

15.7 
(2.1) 

14.2 
(1.3) 

44.8 
(2.8) 

12.6 
(1.5) 

12.9 
(1.0)  
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Fig. 5. Accuracy of BW predictions for Model_Age, 
Model_FB, Model_Age_FB, and Model_Age_FB_FI 
using LASSO Regression (LO), Random Forest (RF), 
and Long Short-term Memory (LSTM) network with 
various information from the growth period as 
input. A. Accuracy for individual-informed predic-
tive scenario (I_PS); B. Accuracy for individual- and 
group-informed predictive scenario (IG_PS). Accu-
racy is labeled as mean (SD). The x-axis indicates 
the algorithm. The y-axis indicates the individual or 
combination of time slices used as the training set.   
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Fig. 6. Receiver operating characteristic (ROC) 
curves for Model_Age, Model_FB, Model_Age_FB, 
and Model_Age_FB_FI using LASSO Regression (LO), 
Random Forest (RF), and Long Short-term Memory 
(LSTM) network with all the time slices (75–158 d of 
age) as the training set. Youden Index cutoff values 
(kg) that maximized the sum of sensitivity and 
specificity are labeled for each algorithm. A. ROC 
curves for the individual-informed predictive sce-
nario (I_PS); B. ROC curves for the individual- and 
group-informed predictive scenario (IG_PS). The 
diagonal line is referred to a no-discrimination line 
between sensitivity and 1 - specificity.   
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other two algorithms in IG_PS (Fig. 4B). The LO and LSTM exhibited 
better predictive capacity than RF with smaller RMSE (Table 4) and RAE 
(Table S1), as well as higher accuracy (Fig. 5) across predictions. The LO 
had relatively smaller RMSE values than LSTM in most predictions in 
I_PS, while LSTM had smaller RMSE values in the predictions that 
included the time slice 5 or 6 in the training set compared to LO in IG_PS. 
A similar relationship of the predictive capacity between LO and LSTM 

was also found in accuracy estimation (Fig. 5). The sensitivity, speci-
ficity, and the optimal cut-off point for BW sorting purposes also varied 
among LO, RF, and LSTM (Fig. 6). 

3.4. Prediction performance differs across breeds 

Statistical summaries of BW and predictors of breed groups along the 
growth trial are depicted in Fig. 2. Similar BW was observed at any 
growing stage (Fig. 2A), while differences in DFI, DOT, and DNV were 
observed among breed groups. The LW pigs ate about 0.2 kg more than 
DR and LR groups daily from 131 to 141 d of age (Fig. 2B). During the 
age period 75 to 158 d, the average daily time spent in the feeder was 
76.3 min of LW pigs, which was greater than that of DR and LR pigs 
(Fig. 2C), while DR pigs visited the feeder about two times less daily than 
the other two breeds (Fig. 2D). 

Fig. 7 reports r, RMSE, and accuracy of the predictions that were 
performed within DR, LR, and LW breed group. The r was greatest in the 
LW group and smallest in the DR group in Model_Age, Model_Age_FB, 
and Model_Age_FB_FI, a fact that was consistent across algorithms 
(Fig. 7A). While in Model_FB, the r was similar between LR and LW 
groups using RF and LSTM algorithms (Fig. 7A). Predictions for the LW 
group had the smallest RMSE across models using LO and LSTM algo-
rithms, while the predictions had similar RMSE values between LR and 
LW groups across models using RF algorithm (Fig. 7B). The accuracy of 
classification was highest in the LW group than the other two breed 
groups in Model_Age, Model_Age_FB, and Model_Age_FB_FI across al-
gorithms, while the accuracy in the DR group tended to be higher than 
the other two breed groups in Model_FB across algorithms (Fig. 7C). In 
summary, the finishing-stage BW of LW pigs was more predictable than 
that of LR and DR pigs. 

3.5. Predictive performance of ‘leave-one-group-out’ group-informed 
prediction 

In this scenario, we performed the group-informed prediction using 
the leave-one-group-out validation strategy to minimize data depen-
dence between training and validation sets. Table 5 summarizes the 
correlation, RMSE, and accuracy for each model using three algorithms. 
Similar to the results in IG_PS, the inclusion of feeding behavior and feed 
intake information in the model helped increase the correlation and 
accuracy, as well as decrease the RMSE of the prediction. As expected, 
the predictive performance dropped when different pigs were used in 
the training and validation set. 

4. Discussion 

Feeding behavior is a collection of activities that reflect an in-
dividual’s hunger or satiety and which are subject to vary between 
physiological or developmental stages. These behaviors can convey 
essential information to producers to optimize feed management stra-
tegies and identify abnormal animals (Fetissov, 2017). The use of elec-
tronic feeders can enable the collection of various formats of feeding 
patterns. In this study, we used the daily amount of feed intake, number 
of visits, and feeder occupation time, as suggested by Hyun and Ellis 
(2001), for the ability of these measures to recapitulate a clear circadian 
feeding rhythm in pigs (Maselyne et al., 2015). Our data showed that 
daily feed intake increased, while daily feeder occupation time and daily 
number of visits to the feeder decreased as pigs grew. This result is in 
agreement with Rauw et al. (2006), who observed that pigs ate more but 
spent less time feeding as they increased in weight. The present study 
investigated the role of feeding behavior recorded by RFID along with 
other available information in predicting the BW of growing pigs at the 
finishing stage. Generally, predictions were better made at the individ-
ual rather than a group level. This discrepancy could be due to variations 
in both growth pattern and feeding behavior among individuals pigs 
during the entire growth-finish period (Magowan et al., 2007). In our 

Fig. 7. Summary of predictive performance by breed for Model_Age, Model_FB, 
Model_Age_FB, and Model_Age_FB_FI using LASSO Regression (LO), Random 
Forest (RF), and Long Short-term Memory (LSTM) network with all the time 
slices (75–158 d of age) as the training set. A. Pearson’s correlation; B. Root 
mean squared error; C. Accuracy on BW classification. Data are presented as 
mean with SD error bar. DR = Duroc, LR = Landrace, LW = Large White. 
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study, predictions made for individual pigs minimized the effect of these 
variations, and therefore, resulted in enhanced predictive performance. 
The prediction made on an individual basis provides information that 
helps rank and allocate individuals and contributes to the development 
of precision livestock farming. 

Predictive scenarios and models in this study were designed for 
predicting the finishing BW based on the best information available 
during the growing phase within an individual herd or farm range. 
However, to apply the models and predict the BW of pigs from other 
herds or farms, the use of different validation strategies discussed by 
Bresolin and Dórea (2020) should be considered. Our study also evalu-
ated the models’ predictive performance by validating on a group of pigs 
that were entirely excluded from the training set in G_PS. This scenario 
provides insight into how the implementation of such a validation 
strategy would perform. Future studies are needed to investigate and 
compare different predictive methods that can be used for prediction 
across herds or farms. Pigs in our study were related to each other, 
sharing either sires or dams. Genetic relationships between pigs may 
also increase the similarity in feeding behavior and growth patterns. 
Therefore, when the same group-informed prediction strategies are 
applied to less genetically related pigs, the predictive performance may 
be weakened to some extent. 

To further reduce the costs of data collection and make it economi-
cally feasible in a commercial setting, we aimed to determine the best 
time frame and the minimum amount of data needed to generate an 
adequate predictive performance. As expected, our results indicate that 
training sets including slice 6 (145–158 d of age) achieved better per-
formance compared to other sets containing distant data. The recent 
data provide more information than the data distant from the period to 
be predicted (de Freitas et al., 1999). It is still challenging to make an 
accurate multiple-step ahead prediction because accumulated uncer-
tainty and errors during the long time lag in such prediction may result 
in poor predictive accuracy (Ben Taieb et al., 2012; Sorjamaa et al., 
2007). Additionally, our results suggest that the amount of training data 
affects the prediction, as the inclusion of more data yielded better pre-
dictions regardless of the model used. Therefore, future studies are still 
needed to balance data size and time dependence in the model and 
develop better strategies from data processing and model selection to 
improve the prediction with a long time lag. 

Machine learning algorithms have been proposed as tools to bridge 
long-time lags in several studies for growth-related prediction in ani-
mals. We chose LO, RF, and LSTM as three representative algorithms 
from linear regression and machine learning space for our specific data. 
Our results indicate that LSTM and LO performed better than RF 
regression with higher accuracies and smaller RMSE in the predictions. 
Compared to LO and other linear regressions, LSTM detects and gathers 
information from the nonlinear relationship between predictors and is 
also effective in learning the dynamic feature of time series data based 
on an efficient and gradient-based algorithm (Hochreiter and Schmid-
huber, 1997). However, LSTM performed similarly or worse compared 
to LO for individual pig predictions. This may be because the training 
data for I_PS were much less than that for IG_PS and the performance of 
LSTM is sensible to changes in the quantity of data. As data accumulate 
on the farm, the performance of LSTM may outperform other methods 
and make it a viable alternative for large-scale implementation in 

practical production. The RF is well-known as an accurate classifier used 
in animal research because it is easy to perform with a fast training speed 
and high tolerance of outliers and noise (Breiman, 2001). Moreover, RF 
can effectively avoid overfitting by randomly subsampling the training 
data (Ho, 1998). In our case, RF was used to predict a quantitative 
outcome. According to our results, RF achieved similar correlations but 
relatively larger prediction errors and smaller accuracies compared to 
the other two algorithms in most predictions. The reason for this sub- 
optimal performance could be that RF assumes observations as inde-
pendent and identically distributed (Breiman, 2001), which is not true 
for time series data. Therefore, it is relatively hard for RF to extrapolate 
the growing trend and generalize it to the data that fall outside of the 
range of the training set. Hoens et al. (2012) summarized some ap-
proaches for pre- or post-processing the data to reduce the impact of 
non-stationarity in prediction for algorithms like RF. However, every 
data processing approach is limited to an individual dataset within a 
given research problem (Hoens et al., 2012). Future studies would be 
needed to look for a specific way to handle this issue for RF that was 
present in our study. To assess the computational burden of algorithms, 
we compared the running wall time (Table S3). The LO was considerably 
faster training than RF and LSTM in both I_PS and IG_PS. The computing 
time for both RF and LSTM was susceptible to the hyperparameter 
setting in our study. 

Data in the present study were collected from Duroc, Landrace, and 
Large White pigs, the most common breeds in the United States. Dif-
ferences in both feed intake and feeding behavior across these breeds 
have been previously reported (Bergamaschi et al., 2020; Fernández 
et al., 2011; Labroue et al., 1999, 1994). In our study, BW was similar 
among three breeds at any stage. In agreement with our results, no 
difference was distinguished in average daily gain and growth rate along 
the growth period between the same three breeds (Fernández et al., 
2011; Smith and Pearson, 1986). The daily feed intake was different 
during some growth periods, which was also reported by Bergamaschi 
et al. (2020) on the same three breeds during the growth trial. Our study 
found that Large White pigs spent more time in feeders than the other 
two breeds. Moreover, Large White and Landrace pigs visited feeders 
more frequently than Duroc pigs. Fernández et al. (2011) reported a 
similar relationship of the daily number of visits among the same three 
breeds, but they found that Duroc pigs had higher feeder occupation 
time than other breeds. Our results show that the BW of Large White pigs 
was more predictable than that of Duroc and Landrace pigs, with higher 
correlation, accuracy, and lower prediction error. Different patterns in 
feeding behavior between Large White and the other two breeds and 
more linearity of BW of Large White pigs during the growth trial as 
described previously could potentially explain the variation in the pre-
dictive performance observed for each breed in the present study. These 
results emphasize the importance of accounting for breed differences in 
BW prediction by considering each breed’s specific biological features 
for feeding behavior, feed intake, and growth. 

5. Conclusions 

The present study evaluates the usefulness of electronic feeder data 
in predicting the BW of pigs at the finishing stage. Four models each 
implemented with three algorithms were constructed and trained by 

Table 5 
Summary of correlation, RMSE (kg), and accuracy for group-informed predictive scenario (G_PS). Data are presented as mean (SD).  

Model Predictive Performance 

Correlation RMSE (kg) Accuracy 

LO RF LSTM LO RF LSTM LO RF LSTM 

Model_Age 0.25 (0.02) 0.37 (0.02) 0.28 (0.02) 17.46 (0.28) 22.83 (1.96) 21.19 (0.50) 0.51 (0.02) 0.50 (0.06) 0.45 (0.06) 
Model_FB 0.40 (0.06) 0.26 (0.04) 0.20 (0.05) 51.43 (2.25) 51.50 (1.78) 50.99 (1.70) 0.50 (0.06) 0.50 (0.06) 0.50 (0.06) 
Model_Age_FB 0.25 (0.02) 0.42 (0.04) 0.33 (0.02) 17.41 (0.27) 20.87 (1.65) 20.79 (0.67) 0.52 (0.03) 0.50 (0.06) 0.49 (0.06) 
Model_Age_FB_FI 0.43 (0.02) 0.55 (0.04) 0.44 (0.02) 15.99 (0.29) 19.33 (1.78) 19.95 (0.63) 0.57 (0.04) 0.50 (0.06) 0.54 (0.03)  
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different subsets of data collected along the grow-finish period to predict 
the BW of individuals or groups of pigs. Our results demonstrate that the 
role of feeding behavior and feed intake data varies in different pre-
dictive scenarios. We also found that the data collected from the period 
that was the closest to the finishing stage help to achieve the best pre-
dictive performance across predictions. Among the three algorithms, 
LSTM and LO achieved better performance than RF. Differences in the 
prediction made within Duroc, Landrace, and Large White populations 
were also noticed in this study. Such information could be used as a 
management tool for swine farmers to assess and rank individual pigs to 
adjust feeding strategies during the growth and avoid sorting losses at 
the finishing while reducing labor and costs. 
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Fernandes, A.F.A., Dórea, J.R.R., Fitzgerald, R., Herring, W., Rosa, G.J.M., 2019. A novel 
automated system to acquire biometric and morphological measurements and 
predict body weight of pigs via 3D computer vision. J. Anim. Sci. 97, 496–508. 
https://doi.org/10.1093/jas/sky418. 
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