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Hydrogenation of Mg film and Mg nanoblade array on Ti coated Si
substrates

Abstract

The hydrogenation of Mg film and Mg nanoblade array fabricated on Ti coated Si substrates has been studied
and compared. The nanoblades start to absorb hydrogen at a temperature between 250 and 300 degrees C,
which is much lower than 350 degrees C for Mg film. However, the saturated total hydrogen uptake in
nanoblades is less than half of that in the film, resulting from MgO formation by air exposure. The nanoblade
morphology with large surface area and small hydrogen diffusion length, and the catalytic effect of Ti layer, are
two main reasons for the nanoblade hydrogenation behavior.
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The hydrogenation of Mg film and Mg nanoblade array fabricated on Ti coated Si substrates has
been studied and compared. The nanoblades start to absorb hydrogen at a temperature between 250
and 300 °C, which is much lower than 350 °C for Mg film. However, the saturated total hydrogen
uptake in nanoblades is less than half of that in the film, resulting from MgO formation by air
exposure. The nanoblade morphology with large surface area and small hydrogen diffusion length,
and the catalytic effect of Ti layer, are two main reasons for the nanoblade hydrogenation
behavior. © 2008 American Institute of Physics. [DOI: 10.1063/1.3003880]

Magnesium has attracted extensive research attention in
the development of future solid state H-storage materials due
to its lightweight, low cost, and high reversible H-storage
capacity of 7.6 wt % in MgH2.1_3 However, its high thermo-
dynamic stability and sluggish reaction kinetics limit its
practical applicaltions.“—6 Such limitations could be improved
by making Mg nanostructures with large surface-to-volume
ratios to enhance surface reactivity. Currently the Mg nano-
structures are mainly fabricated via ball milling,z"4 and the
resulting materials are a micrometer-sized powder with
nanometer-sized grains. Mg thin film provides an ideal alter-
native to powder since it can be formed in a controlled en-
vironment (high vacuum).”? However, the grain aggregation
in powder and the relatively dense characteristic of film limit
the surface area increment and H-sorption activity. Recently,
by using an oblique angle deposition (OAD) technique based
on physical vapor deposition, both Tang et al. and He et al.
have demonstrated that Mg forms nanoblade array and the
structure of the nanoblades can be tailored by a geometric
shadowing effect and doping.w’“ This tunable nanoblade
structure provides an excellent opportunity to study the in-
teraction of hydrogen with different intrinsic Mg nanostruc-
tures, and it is expected that the hydrogen sorption perfor-
mance could be improved by the unique morphology of the
nanoblades. In order to confirm this speculation, the hydro-
genation behaviors of a dense Mg film and a porous Mg
nanoblade array were studied and compared in this letter.

Both the Mg thin film and the nanoblade array were
fabricated by a unique, custom designed electron-beam
evaporation system (Pascal Technology) equipped with a
glovebox to prevent the sample from exposing to air during
the postdeposition sample transfer. The details on the experi-
mental setup was described elsewhere.'” The chamber base
pressure was 1077 Torr. A layer of 200-nm-thick Ti film was
first evaporated onto the Si substrates using the vapor inci-
dent angle a=10° with respect to the substrate normal.
This Ti layer was used as a diffusion barrier to prevent Mg
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alloying with Si."® Then, either a Mg film or a Mg nanoblade
array was deposited on the Ti layer by near-normal («
=10°) or OAD (a=80°) deposition, with a 4 um thickness
reading by a quartz crystal microbalance. Both the thin film
(labeled as “A”) and the nanoblade array (labeled as “B”)
samples were cut into 0.5 0.5 in.> pieces and were hydro-
genated together in a PCT (pressure-composition isotherms)
Sievert’s-type apparatus (HyEnergy, PCT Pro-2000) under
20 bar H-pressure for 2000 min at 7=200, 250, 300, and
350 °C, respectively. These hydrogenated samples are la-
beled as “A2007”, “A2507, “A300”, and “A350” for thin film
samples, and “B200”, “B250”, “B300”, and “B350” for
nanoblade samples.

The morphologies of the as-deposited and hydrogenated
thin film and nanoblade samples were investigated by a field-
emission scanning electron microscopy (SEM) (FEI Inspect
F), and the representative SEM images are shown in Fig. 1.
As shown in the inset of Fig. 1(a), the surface of the as-
deposited Mg film consists of piles of nanoflakes, overlap-
ping with one another, while the cross-sectional SEM [Fig.
1(a)] reveals a typical columnar structure'* of Mg film with
~4.0 um thickness. The as-deposited OAD sample [Fig.
1(d)] shows a well-aligned nanoblade array structure'*"!
with a height of ~7.1 um and a blade thickness of
~160 nm. In both Figs. 1(a) and 1(d), a thin layer of dense
Ti film is also visible between the Mg layer and Si substrate.
After hydrogenation at 7=300 °C, almost no morphology
change is observed for the Mg film as shown in Fig. 1(b), but
the morphology of the nanoblade sample changes signifi-
cantly (no change at 7<250 °C), and both the nanoblade
height and thickness increase to ~7.3 um and 220 nm [Fig.
1(e)], corresponding to a volume expansion of ~41%. When
the hydrogenation temperature reaches 350 °C, visible coa-
lescence appears in the thin film [Fig. 1(c)], the flakelike
surface becomes a surface with aggregated particles, and the
film thickness increases to ~6.2 um. This corresponds to
~55% volume expansion. In addition, most of the Ti thin
layer still remains between Mg layer and substrate, and only
a small quantity of Mg,Si defects are formed progressively

© 2008 American Institute of Physics
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FIG. 1. Typical cross-sectional view SEM images of Mg films (A, A300,
and A350) and nanoblades (B, B300, and B350) before and after hydroge-
nation at various temperatures. Their corresponding top view images are
shown in the insets.

through the pinholes in the Ti film (not shown). Under the
same condition, the nanoblades become longer (~7.7 wm)
and thicker (~250 nm) with a volume expansion of ~69%,
and no Mg,Si defects are observed.

The changes in the chemical and crystalline structures in
the hydrogenation process were investigated by the grazing
angle x-ray diffraction (XRD) (PANalytical X’Pert PRO
MRD). For the as-deposited film and nanoblade samples, the
dominant XRD peaks are from Mg, but the preferred crystal
orientations are different, as shown in Figs. 2(a) and 2(e).
For the thin film sample, even at T=200 °C, a trace amount
of Mg,Si alloy starts to form [Fig. 2(b)]. This trace of Mg,Si
coexists with Mg even at T=300 °C [Fig. 2(c)]. However,
when T increases to 350 °C, the sample is dominated by a
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FIG. 2. (Color online) Typical XRD patterns of Mg films (A, A200, A300,
and A350) and nanoblades (B, B250, B300, and B350) before and after
hydrogenation at various temperatures.
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FIG. 3. (Color online) FRES spectra of (a) Mg films and (b) Mg nanoblades
after hydrogenation at various temperatures. The inset in (a) shows the en-
larged plots of low temperature hydrogenated films.

tetragonal MgH, [Fig. 2(d)], although traces of Mg,Si, Mg,
and/or TiH, are also detectable. This significant change
implies that Mg thin film starts to hydrogenate at near T
=350 °C, which is consistent with other reports > For the
nanoblade sample, at 7=200 °C, no detectable change is ob-
served in the XRD pattern compared to that of the as-
deposited sample. At T=250 °C, MgO, cubic TiH;s, and
possible MgH, start to form [Fig. 2(f)]. When hydrogenated
at T=300 °C [Fig. 2(g)], distinguishable but small amount of
MgH, is visible. The MgO peak increases significantly, and
the Ti seems to change entirely into tetragonal TiH,. When
the temperature goes up to 350 °C, the MgH, composition
increases substantially, so is the MgO. However a small
amount of Mg still remains in the sample. Compared to the
hydrogenation behavior of thin film sample, the nanoblade
sample starts to hydrogenate at a lower temperature (250 or
300 °C versus 350 °C).

To further understand the hydrogenated samples, the
relative hydrogen depth profiles in both the film and nano-
blade samples were measured using a forward recoil spec-
trometry (FRES) with a National Electrostatlcs Corporation
(NEC) minitandem ion accelerator.'® The energy-resolved
counts of H atoms recoiled from the sample by a 3.0 MeV
He?* beam carry H-depth profile information with higher and
lower energy signals corresponding to the H concentrations
near surface and deeper beneath the surface. The H counts
were converted to H weight percentage by assuming that the
H content near the film surface, namely, in the FRES energy
of 800-1130 keV, of fully hydrogenated Mg film sample
(A350) is 7.6 wt %. Figure 3 shows the obtained FRES spec-
tra of the Mg film and nanoblade samples. As shown
in Fig. 3(a), for the thin film samples hydrogenated at
T=<300 °C, the H concentration is rather minimal. The en-
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FIG. 4. (Color online) Total hydrogen uptake vs hydrogenation temperature
for Mg films and nanoblades.

larged H-profiles reveal a small amount of H enrichment at
the sample surface possibly due to the water vapor adsorbed
on the sample surface.'’ However, at T=350 °C, a signifi-
cant amount of H through the entire Mg film is detected. This
agrees well with the SEM and XRD results. The H concen-
tration decreases gradually from the Mg surface to Mg/Ti
interface, which may be caused by the formation of Mg,Si
near the Si substrate. For the nanoblade sample, at T
=200 °C, a noticeable amount of H is present through the
whole sample, as shown in Fig. 3(b). However, the XRD
does not show any metal hydride formation, implying that
the H signal in FRES may be caused by the H,O vapor
absorbed in the nano-channels.!” At 7=250 °C, a nonuni-
form H profile develops with significant H uptake occurring
deep inside the nanoblades. From the XRD result, such a
high H content could be contributed by the TiH, s and MgH,
near the interface between Mg and Ti, and the formation of
the metal hydrides could be the result of the Ti catalytic
dissociating hydrogen molecules.® ™ At T=300 °C, signifi-
cant H concentration occurs not only deep inside the nano-
blades but also on the surface, which reveals that the Mg
nanoblades themselves start to absorb H from the surface.
When T increases to 350 °C, hydrogen almost distributes
uniformly across the length of the nanoblades, and the shape
of the H profile is similar to that of the thin film. However,
the saturated surface H concentration is only ~3.3 wt %,
which is much less than 7.6 wt % of the film sample. By
integrating the H concentration in the energy ranging from
250 to 1250 keV, the temperature dependent hydrogen con-
tent in the thin film and nanoblade samples can be estimated
and plotted in Fig. 4. It clearly shows that the activation of H
absorption occurs between 250 and 300 °C for the nano-
blade sample and between 300 and 350 °C for the thin film
sample. However the saturated total H absorption in porous
nanoblades is less than half of that in the film, and this dif-
ference may result from the formation of MgO in nanoblade
samples.

The significant improvement of the hydrogenation ther-
modynamics for intrinsic Mg nanoblade sample may be due
to the following reasons: (1) the nanoblade sample provides
more surface area for H interacting with Mg and it may
contain more distorted (active) Mg bonds; (2) the hydroge-
nation process is a volume expansion process, as demon-
strated by the SEM images. Although there are nanovoids or
cracks inside the thin film, in general, it only provides one

Appl. Phys. Lett. 93, 163114 (2008)

direction to expand the volume; the nanoblade array, with
proper separation, has almost three degrees of freedom for
the volume expansion; (3) the hydrogenation process is
mainly governed by the H diffusion and reaction. The diffu-
sion length of H in nanoblades is determined by the thick-
ness of the blades since H atoms have access to all around
the nanoblades. For the H diffusion in a thin film, it is deter-
mined not only by the diffusion in Mg but also the thickness
of MgH, layer because this layer can slow down the H dif-
fusion signiﬁcant]y;21 (4) since the Ti layer is buried under
the Mg film, it only acts as a diffusion barrier during hydro-
genation; for the nanoblade sample, due to the limited sur-
face coverage of Mg nanoblades on Ti thin film, the Ti layer
cannot only act as the diffusion barrier but also serve as a
catalyst to help H, dissociation.”” However, the porous struc-
ture of Mg nanoblade array makes it easy to trap H,O and O,
that could prevent a thorough hydrogenation of the sample.
This disadvantage can be improved by carefully controlling
the sample transfer and treatment environment.

This work was supported by a DOE Hydrogen Initiative
Award (No. DE-FG02-05ER46251). The authors also would
like to thank Professor Zhengwei Pan for letting us use his
SEM equipment and John Gibbs for proofreading the manu-
script.
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