3,025 research outputs found

    Competition between ferromagnetic metallic and paramagnetic insulating phases in manganites

    Get PDF
    La 0.67Ca 0.33Mn 1-xCu xO 3 (x=0 and 0.15) epitaxial thin films were grown on the (100) LaAlO 3 substrates, and the temperature dependence of their resistivity was measured in magnetic fields up to 12 T by a four-probe technique. We found that the competition between the ferromagnetic metallic (FM) and paramagnetic insulating (PI) phases plays an important role in the observed colossal magnetoresistance (CMR) effect. Based on a scenario that the doped manganites approximately consist of phase-separated FM and PI regions, a simple phenomenological model was proposed to describe the CMR effect. Using this model, we calculated the resistivity as functions of temperature and magnetic field. The model not only qualitatively accounts for some main features related to the CMR effect, but also quantitatively agrees with the experimental observations. © 2002 American Institute of Physics.published_or_final_versio

    Normal saline resuscitation worsens lactic acidosis in experimental sepsis

    Get PDF
    It is well established that infusing large amounts of normal saline causes hyperchloremic acidosis, yet the clinical relevance of this is unknown.\ud \ud We found that infusion of normal saline, compared with a balanced crystalloid, worsens lactic acidosis in experimental sepsis

    Deformation of the Fermi surface in the extended Hubbard model

    Full text link
    The deformation of the Fermi surface induced by Coulomb interactions is investigated in the t-t'-Hubbard model. The interplay of the local U and extended V interactions is analyzed. It is found that exchange interactions V enhance small anisotropies producing deformations of the Fermi surface which break the point group symmetry of the square lattice at the Van Hove filling. This Pomeranchuck instability competes with ferromagnetism and is suppressed at a critical value of U(V). The interaction V renormalizes the t' parameter to smaller values what favours nesting. It also induces changes on the topology of the Fermi surface which can go from hole to electron-like what may explain recent ARPES experiments.Comment: 5 pages, 4 ps figure

    Controllable Synthesis of Magnesium Oxysulfate Nanowires with Different Morphologies

    Get PDF
    One-dimensional magnesium oxysulfate 5Mg(OH)2 · MgSO4 · 3H2O (abbreviated as 513MOS) with high aspect ratio has attracted much attention because of its distinctive properties from those of the conventional bulk materials. 513MOS nanowires with different morphologies were formed by varying the mixing ways of MgSO4 · 7H2O and NH4OH solutions at room temperature followed by hydrothermal treatment of the slurries at 150 °C for 12 h with or without EDTA. 513MOS nanowires with a length of 20–60 μm and a diameter of 60–300 nm were prepared in the case of double injection (adding MgSO4 · 7H2O and NH4OH solutions simultaneously into water), compared with the 513MOS with a length of 20–30 μm and a diameter of 0.3–1.7 μm in the case of the single injection (adding MgSO4 · 7H2O solution into NH4OH solution). The presence of minor amount of EDTA in the single injection method led to the formation of 513MOS nanowires with a length of 100–200 μm, a diameter of 80–200 nm, and an aspect ratio of up to 1000. The analysis of the experimental results indicated that the hydrothermal solutions with a lower supersaturation were favorable for the preferential growth of 513MOS nanowires along b axis

    The intestinal expulsion of the roundworm Ascaris suum is associated with eosinophils, intra-epithelial T cells and decreased intestinal transit time

    Get PDF
    Ascaris lumbricoides remains the most common endoparasite in humans, yet there is still very little information available about the immunological principles of protection, especially those directed against larval stages. Due to the natural host-parasite relationship, pigs infected with A. suum make an excellent model to study the mechanisms of protection against this nematode. In pigs, a self-cure reaction eliminates most larvae from the small intestine between 14 and 21 days post infection. In this study, we investigated the mucosal immune response leading to the expulsion of A. suum and the contribution of the hepato-tracheal migration. Self-cure was independent of previous passage through the liver or lungs, as infection with lung stage larvae did not impair self-cure. When animals were infected with 14-day-old intestinal larvae, the larvae were being driven distally in the small intestine around 7 days post infection but by 18 days post infection they re-inhabited the proximal part of the small intestine, indicating that more developed larvae can counter the expulsion mechanism. Self-cure was consistently associated with eosinophilia and intra-epithelial T cells in the jejunum. Furthermore, we identified increased gut movement as a possible mechanism of self-cure as the small intestinal transit time was markedly decreased at the time of expulsion of the worms. Taken together, these results shed new light on the mechanisms of self-cure that occur during A. suum infections

    Cognitive reserve in granulin-related frontotemporal dementia: from preclinical to clinical stages

    Get PDF
    OBJECTIVE Consistent with the cognitive reserve hypothesis, higher education and occupation attainments may help persons with neurodegenerative dementias to better withstand neuropathology before developing cognitive impairment. We tested here the cognitive reserve hypothesis in patients with frontotemporal dementia (FTD), with or without pathogenetic granulin mutations (GRN+ and GRN-), and in presymptomatic GRN mutation carriers (aGRN+). METHODS Education and occupation attainments were assessed and combined to define Reserve Index (RI) in 32 FTD patients, i.e. 12 GRN+ and 20 GRN-, and in 17 aGRN+. Changes in functional connectivity were estimated by resting state fMRI, focusing on the salience network (SN), executive network (EN) and bilateral frontoparietal networks (FPNs). Cognitive status was measured by FTD-modified Clinical Dementia Rating Scale. RESULTS In FTD patients higher level of premorbid cognitive reserve was associated with reduced connectivity within the SN and the EN. EN was more involved in FTD patients without GRN mutations, while SN was more affected in GRN pathology. In aGRN+, cognitive reserve was associated with reduced SN. CONCLUSIONS This study suggests that cognitive reserve modulates functional connectivity in patients with FTD, even in monogenic disease. In GRN inherited FTD, cognitive reserve mechanisms operate even in presymptomatic to clinical stages

    Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells

    Get PDF
    Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (lambda < 450 nm) to photons of longer wavelength (lambda > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the shortwavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300-450 nm) to diminish the severe surface recombination that occurs in c-Si NWSCs. The developed Ir(III) complexes can be considered promising energy converters because they exhibit superior intrinsic properties such as a high quantum yield, a large Stokes shift, a long exciton diffusion length in crystalline film, and a reproducible synthetic procedure. Using the developed 1011) complexes, highly crystalline energy downshifting layers were fabricated by ultrasonic spray deposition to enhance the photoluminescence efficiency by increasing the radiative decay. With the optimized energy downshifting layer, our 1cm(2) c-Si NWSCs with Ir(III) complexes exhibited a higher IQE value for short-wavelength light (300-450 nm) compared with that of bare Si NWSCs without Ir(III) complexes, resulting in a notable increase in the short-circuit current density (from 34.4 mA.cm(-2) to 36.5 mA.cm(-2) )

    Ecology: a prerequisite for malaria elimination and eradication

    Get PDF
    * Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific * The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria * Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission * Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog
    corecore