293 research outputs found

    General Gauge Mediation at the Weak Scale

    Get PDF
    We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to mhm_h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.Comment: 43 pages, 20 figures, mathematica package included in the sourc

    A realistic pattern of fermion masses from a five-dimensional SO(10) model

    Full text link
    We provide a unified description of fermion masses and mixing angles in the framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa couplings of order unity. The space-time is five dimensional and the extra flat spatial dimension is compactified on the orbifold S1/(Z2×Z2)S^1/(Z_2 \times Z_2'), leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions are localised. The gauge symmetry breaking is completed by means of a rather economic scalar sector, avoiding the doublet-triplet splitting problem. The matter fields live in the bulk and their massless modes get exponential profiles, which naturally explain the mass hierarchy of the different fermion generations. Quarks and leptons properties are naturally reproduced by a mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of bulk masses in terms of a single parameter. The model provides a realistic pattern of fermion masses and mixing angles for large values of tanβ\tan\beta. It favours normally ordered neutrino mass spectrum with the lightest neutrino mass below 0.01 eV and no preference for leptonic CP violating phases. The right handed neutrino mass spectrum is very hierarchical and does not allow for thermal leptogenesis. We analyse several variants of the basic framework and find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories

    Get PDF
    Recent advances in geometric morphometrics provide improved techniques for extraction of biological information from shape and have greatly contributed to the study of ecomorphology and morphological evolution. However, the vertebral column remains an under-studied structure due in part to a concentration on skull and limb research, but most importantly because of the difficulties in analysing the shape of a structure composed of multiple articulating discrete units (i.e. vertebrae). Here, we have applied a variety of geometric morphometric analyses to three-dimensional landmarks collected on 19 presacral vertebrae to investigate the influence of potential ecological and functional drivers, such as size, locomotion and prey size specialisation, on regional morphology of the vertebral column in the mammalian family Felidae. In particular, we have here provided a novel application of a method—phenotypic trajectory analysis (PTA)—that allows for shape analysis of a contiguous sequence of vertebrae as functionally linked osteological structures. Our results showed that ecological factors influence the shape of the vertebral column heterogeneously and that distinct vertebral sections may be under different selection pressures. While anterior presacral vertebrae may either have evolved under stronger phylogenetic constraints or are ecologically conservative, posterior presacral vertebrae, specifically in the post-T10 region, show significant differentiation among ecomorphs. Additionally, our PTA results demonstrated that functional vertebral regions differ among felid ecomorphs mainly in the relative covariation of vertebral shape variables (i.e. direction of trajectories, rather than in trajectory size) and, therefore, that ecological divergence among felid species is reflected by morphological changes in vertebral column shape

    Repeated Exposure to Methamphetamine, Cocaine or Morphine Induces Augmentation of Dopamine Release in Rat Mesocorticolimbic Slice Co-Cultures

    Get PDF
    Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1–1000 µM), cocaine (0.1–300 µM) or morphine (0.1–100 µM) for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1–1000 µM) had little effect. Following repeated exposure to methamphetamine (10 µM) for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1–300 µM) or morphine (10 and 100 µM). Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 µM), and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA receptors and the medial prefrontal cortex play an essential role in the dopaminergic sensitization. This in vitro sensitization model provides a unique approach for studying mechanisms underlying behavioral sensitization to drugs of abuse

    A Linear Framework for Time-Scale Separation in Nonlinear Biochemical Systems

    Get PDF
    Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level

    Down-Regulation of EBV-LMP1 Radio-Sensitizes Nasal Pharyngeal Carcinoma Cells via NF-κB Regulated ATM Expression

    Get PDF
    BACKGROUND:The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice. RESULTS:In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells. CONCLUSIONS:Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs

    Reduced Neutrophil Apoptosis in Diabetic Mice during Staphylococcal Infection Leads to Prolonged Tnfα Production and Reduced Neutrophil Clearance

    Get PDF
    Diabetes is a frequent underlying medical condition among individuals with Staphylococcus aureus infections, and diabetic patients often suffer from chronic inflammation and prolonged infections. Neutrophils are the most abundant inflammatory cells during the early stages of bacterial diseases, and previous studies have reported deficiencies in neutrophil function in diabetic hosts. We challenged age-matched hyperglycemic and normoglycemic NOD mice intraperitoneally with S. aureus and evaluated the fate of neutrophils recruited to the peritoneal cavity. Neutrophils were more abundant in the peritoneal fluids of infected diabetic mice by 48 h after bacterial inoculation, and they showed prolonged viability ex vivo compared to neutrophils from infected nondiabetic mice. These differences correlated with reduced apoptosis of neutrophils from diabetic mice and were dependent upon the presence of S. aureus and a functional neutrophil respiratory burst. Decreased apoptosis correlated with impaired clearance of neutrophils by macrophages both in vitro and in vivo and prolonged production of proinflammatory tumor necrosis factor alpha by neutrophils from diabetic mice. Our results suggest that defects in neutrophil apoptosis may contribute to the chronic inflammation and the inability to clear staphylococcal infections observed in diabetic patients
    corecore