1,434 research outputs found

    The short-term effect of high versus moderate protein intake on recovery after strength training in resistance-trained individuals

    Get PDF
    Background: Dietary protein intakes up to 2.9 g.kg-1.d-1 and protein consumption before and after resistance training may enhance recovery, resulting in hypertrophy and strength gains. However, it remains unclear whether protein quantity or nutrient timing is central to positive adaptations. This study investigated the effect of total dietary protein content, whilst controlling for protein timing, on recovery in resistance trainees. Methods: Fourteen resistance-trained individuals underwent two 10-day isocaloric dietary regimes with a protein content of 1.8 g.kg-1.d-1 (PROMOD) or 2.9 g.kg-1.d-1 (PROHIGH) in a randomised, counterbalanced, crossover design. On days 8-10 (T1-T3), participants undertook resistance exercise under controlled conditions, performing 3 sets of squat, bench press and bent-over rows at 80% 1 repetition maximum until volitional exhaustion. Additionally, participants consumed a 0.4 g.kg-1 whey protein concentrate/isolate mix 30 minutes before and after exercise sessions to standardise protein timing specific to training. Recovery was assessed via daily repetition performance, muscle soreness, bioelectrical impedance phase angle, plasma creatine kinase (CK) and tumor necrosis factor-α (TNF-α). Results: No significant differences were reported between conditions for any of the performance repetition count variables (p>0.05). However, within PROMOD only, squat performance total repetition count was significantly lower at T3 (19.7 ± 6.8) compared to T1 (23.0 ± 7.5; p=0.006). Pre and post-exercise CK concentrations significantly increased across test days (p≤0.003), although no differences were reported between conditions. No differences for TNF-α or muscle soreness were reported between dietary conditions. Phase angle was significantly greater at T3 for PROHIGH (8.26 ± 0.82°) compared with PROMOD (8.08 ± 0.80°; p=0.012). Conclusions: When energy intake and peri-exercise protein intake was controlled for, a short term PROHIGH diet did not improve markers of muscle damage or soreness in comparison to a PROMOD approach following repeated days of intensive training. Whilst it is therefore likely that protein intakes (1.8g.kg-1.d-1) may be sufficient for resistance-trained individuals, it is noteworthy that both lower body exercise performance and bioelectrical phase angle were maintained with PROHIGH. Longer term interventions are warranted to determine whether PROMOD intakes are sufficient during prolonged training periods or when extensive exercise (e.g. training twice daily) is undertaken

    Effect of substrate-target distance and sputtering pressure in the synthesis of AlN thin films

    Get PDF
    In this work, we analyze the influence of the processing pressure and the substrate–target distance on the synthesis by reactive sputtering of c-axis oriented polycrystalline aluminum nitride thin films deposited on Si(100) wafers. The crystalline quality of AlN has been characterized by high-resolution X-ray diffraction (HR-XRD). The films exhibited a very high degree of c-axis orientation especially when a low process pressure was used. After growth, residual stress measurements obtained indirectly from radius of curvature measurements of the wafer prior and after deposition are also provided. Two different techniques are used to determine the curvature—an optically levered laser beam and a method based on X-ray diffraction. There is a transition from compressive to tensile stress at a processing pressure around 2 mTorr. The transition occurs at different pressures for thin films of different thickness. The degree of c-axis orientation was not affected by the target–substrate distance as it was varied in between 30 and 70 mm

    Mycobacterium tuberculosis monoarthritis in a child

    Get PDF
    A child with isolated Mycobacterium tuberculosis monoarthritis, with features initially suggesting oligoarthritis subtype of juvenile idiopathic arthritis, is presented. This patient illustrates the need to consider the possibility of tuberculosis as the cause of oligoarthritis in high-risk pediatric populations even in the absence of a tuberculosis contact history and without evidence of overt pulmonary disease

    Visual impairment from fibrous dysplasia in a middle-aged African man: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Fibrous dysplasia is a benign tumour of the bones and is a disease of unknown aetiology. This report discusses a case of proptosis and visual deterioration with associated bony mass involving the right orbit.</p> <p>Case presentation</p> <p>A 32-year-old Nigerian man of Yoruba ethnic origin presented to the eye clinic of our hospital with right-eye proptosis and visual deterioration of 7-year duration. Presentation was preceded by a history of trauma. Proptosis was preceded by trauma but was non-pulsatile with no thrill or bruit but was associated with bony orbital mass. The patient reported no weight loss. Examination of his right eye showed visual acuity of 6/60 with relative afferent pupillary defect. Fundal examination revealed optic atrophy. Computed tomography showed an expansile bony mass involving all the walls of the orbit. The bony orbital mass was diagnosed histologically as fibrous dysplasia. Treatment included orbital exploration and orbital shaping to create room for the globe and relieve pressure on the optic nerve.</p> <p>Conclusion</p> <p>Fibrous dysplasia should be considered in the differential diagnosis of slowly developing proptosis with associated visual loss in young adults.</p

    Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds

    Get PDF
    ADP-ribosyl cyclases (ADPRCs) catalyse the conversion of nicotinamide adenine dinucleotide to cyclic adenosine diphosphoribose (cADPR) which is a second messenger involved in Ca2+ mobilisation from intracellular stores. Via its interaction with the ryanodine receptor Ca2+ channel in the heart, cADPR may exert arrhythmogenic activity. To test this hypothesis, we have studied the effect of novel cardiac ADPRC inhibitors in vitro and in vivo in models of ventricular arrhythmias. Using a high-throughput screening approach on cardiac sarcoplasmic reticulum membranes isolated from pig and rat and nicotinamide hypoxanthine dinuleotide as a surrogate substrate, we have identified potent and selective inhibitors of an intracellular, membrane-bound cardiac ADPRC that are different from the two known mammalian ADPRCs, CD38 and CD157/Bst1. We show that two structurally distinct cardiac ADPRC inhibitors, SAN2589 and SAN4825, prevent the formation of spontaneous action potentials in guinea pig papillary muscle in vitro and that compound SAN4825 is active in vivo in delaying ventricular fibrillation and cardiac arrest in a guinea pig model of Ca2+ overload-induced arrhythmia. Inhibition of cardiac ADPRC prevents Ca2+ overload-induced spontaneous depolarizations and ventricular fibrillation and may thus provide a novel therapeutic principle for the treatment of cardiac arrhythmias

    Resident physician and hospital pharmacist familiarity with patient discharge medication costs

    Get PDF
    Objective Cost-related medication non-adherence is associated with increased health-care resource utilization and poor patient outcomes. Physicians-in-training generally receive little education regarding costs of prescribed therapy and may rely on hospital pharmacists for this information. However, little is documented regarding either of these health care providers’ familiarity with out-of pocket medication expenses borne by patients in the community. The purpose of this study was to evaluate and compare resident physician and hospital pharmacist familiarity with what patients pay for medications prescribed once discharged. Setting A major tertiary patient care and medical teaching centre in Canada. Method Internal medicine residents and hospital pharmacists within a specific health care organization were invited to participate in an online survey. Eight patient case scenarios and associated discharge therapeutic regimens were outlined and respondents asked to identify the costs patients would incur when having the prescription filled once discharged. Main Outcome Measure Total number and proportion of estimates above and below actual cost were calculated and compared between the groups using χ2 tests. Responses ±10% of the true cost were considered correct. Mean absolute values and standard deviation estimated costs, as well as cost increments above and below 10%, were calculated to assess the magnitude of the discrepancy between the respondent estimates and the actual total cost. Results Forty-four percent of physician residents and 26% of hospital pharmacists accessed the survey. Overall 39% and 47% of medication costs were under-estimated, 32% and 33% were overestimated, and 29% and 21% were correctly estimated by residents and pharmacists, respectively (P = NS). Incorrect estimates were evident across all therapeutic classes and medical indications presented in the survey. The greatest absolute cost discrepancy for both groups was under-estimation of linezolid (800and800 and 400) and over-estimation of clopidogrel (80)andbisoprololtherapy(80) and bisoprolol therapy (22) by residents and pharmacists, respectively. Conclusion Resident physicians and hospital pharmacists are unfamiliar with what patients must pay for drug therapy once discharged

    Spike-Timing Precision and Neuronal Synchrony Are Enhanced by an Interaction between Synaptic Inhibition and Membrane Oscillations in the Amygdala

    Get PDF
    The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2–6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ∼300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ∼130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine

    Biosafety of Non-Surface Modified Carbon Nanocapsules as a Potential Alternative to Carbon Nanotubes for Drug Delivery Purposes

    Get PDF
    BACKGROUND: Carbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C ₆₀ fullerene (C ₆₀). The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C ₆₀ were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C ₆₀ injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection
    • …
    corecore