1,323 research outputs found
Reinforcement Learning for Safe Robot Control using Control Lyapunov Barrier Functions
Reinforcement learning (RL) exhibits impressive performance when managing complicated control tasks for robots. However, its wide application to physical robots is limited by the absence of strong safety guarantees. To overcome this challenge, this paper explores the control Lyapunov barrier function (CLBF) to analyze the safety and reachability solely based on data without explicitly employing a dynamic model. We also proposed the Lyapunov barrier actor-critic (LBAC), a model-free RL algorithm, to search for a controller that satisfies the data-based approximation of the safety and reachability conditions. The proposed approach is demonstrated through simulation and real-world robot control experiments, i.e., a 2D quadrotor navigation task. The experimental findings reveal this approach's effectiveness in reachability and safety, surpassing other model-free RL methods
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed
matter physics counterpart of relativisticWeyl fermion [13] originally
introduced in high energy physics. The Weyl semimetal realized in the TaAs
class features multiple Fermi arcs arising from topological surface states [10,
11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced
negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20].
Recently it was proposed theoretically that a new type (type-II) of Weyl
fermion [21], which does not have counterpart in high energy physics due to the
breaking of Lorentz invariance, can emerge as topologically-protected touching
between electron and hole pockets. Here, we report direct spectroscopic
evidence of topological Fermi arcs in the predicted type-II Weyl semimetal
MoTe2 [22-24]. The topological surface states are confirmed by directly
observing the surface states using bulk-and surface-sensitive angle-resolved
photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI)
pattern between the two putative Fermi arcs in scanning tunneling microscopy
(STM). Our work establishes MoTe2 as the first experimental realization of
type-II Weyl semimetal, and opens up new opportunities for probing novel
phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic
evidence of the Fermi arcs from two complementary surface sensitive probes -
ARPES and STS. A comparison of the calculated band structure for T_d and 1T'
phase to identify the topological Fermi arcs in the T_d phase is also
included in the supplementary informatio
Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed
Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)
Thermodynamics of deformed AdS model with a positive/negative quadratic correction in graviton-dilaton system
By solving the Einstein equations of the graviton coupling with a real scalar
dilaton field, we establish a general framework to self-consistently solve the
geometric background with black-hole for any given phenomenological holographic
models. In this framwork, we solve the black-hole background, the corresponding
dilaon field and the dilaton potential for the deformed AdS model with a
positive/negative quadratic correction. We systematically investigate the
thermodynamical properties of the deformed AdS model with a positive and
negative quadratic correction, respectively, and compare with lattice QCD on
the results of the equation of state, the heavy quark potential, the Polyakov
loop and the spatial Wilson loop. We find that the bulk thermodynamical
properties are not sensitive to the sign of the quadratic correction, and the
results of both deformed holographic QCD models agree well with lattice QCD
result for pure SU(3) gauge theory. However, the results from loop operators
favor a positive quadratic correction, which agree well with lattice QCD
result. Especially, the result from the Polyakov loop excludes the model with a
negative quadratic correction in the warp factor of .Comment: 26 figures,36 pages,V.3: an appendix,more equations and references
added,figures corrected,published versio
Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanoparticles (~20 nm) are electrochemically transformed into ultra-small diameter (2–5 nm) nanoparticles through lithium-induced conversion reactions. Different from most traditional chemical syntheses, this method maintains excellent electrical interconnection among nanoparticles and results in large surface areas and many catalytically active sites. We demonstrate that lithium-induced ultra-small NiFeOx nanoparticles are active bifunctional catalysts exhibiting high activity and stability for overall water splitting in base. We achieve 10 mA cm−2 water-splitting current at only 1.51 V for over 200 h without degradation in a two-electrode configuration and 1 M KOH, better than the combination of iridium and platinum as benchmark catalysts.open10
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Epidermal Growth Factor Gene Polymorphism and Risk of Hepatocellular Carcinoma: A Meta-Analysis
BACKGROUND: Hepatocarcinogenesis is a complex process that may be influenced by many factors, including polymorphism in the epidermal growth factor (EGF) gene. Previous work suggests an association between the EGF 61*A/G polymorphism (rs4444903) and susceptibility to hepatocellular carcinoma (HCC), but the results have been inconsistent. Therefore, we performed a meta-analysis of several studies covering a large population to address this controversy. METHODS: PubMed, EMBASE, Google Scholar and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis was performed to examine the association between EGF 61*A/G polymorphism and susceptibility to HCC. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS: Eight studies were chosen in this meta-analysis, involving 1,304 HCC cases (1135 Chinese, 44 Caucasian and 125 mixed) and 2,613 controls (1638 Chinese, 77 Caucasian and 898 mixed). The EGF 61*G allele was significantly associated with increased risk of HCC based on allelic contrast (OR = 1.29, 95% CI = 1.16-1.44, p<0.001), homozygote comparison (OR = 1.79, 95% CI = 1.39-2.29, p<0.001) and a recessive genetic model (OR = 1.34, 95% CI = 1.16-1.54, p<0.001), while patients carrying the EGF 61*A/A genotype had significantly lower risk of HCC than those with the G/A or G/G genotype (A/A vs. G/A+G/G, OR = 0.66, 95% CI = 0.53-0.83, p<0.001). CONCLUSION: The 61*G polymorphism in EGF is a risk factor for hepatocarcinogenesis while the EGF 61*A allele is a protective factor. Further large and well-designed studies are needed to confirm this conclusion
Lack of Association of Two Common Polymorphisms rs2910164 and rs11614913 with Susceptibility to Hepatocellular Carcinoma: A Meta-Analysis
BACKGROUND: Single nucleotide polymorphisms (SNPs) in microRNA-coding genes may participate in the process of carcinogenesis by altering the expression of tumor-related microRNAs. It has been suggested that two common SNPs rs2910164 in miR-146a and rs11614913 in miR-196a2 are associated with susceptibility to hepatocellular carcinoma (HCC). However, published results are inconsistent and inconclusive. In the present study, we performed a meta-analysis to systematically summarize the possible association between the two SNPs and the risk for HCC. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a search of case-control studies on the associations of SNPs rs2910164 and/or rs11614913 with susceptibility to HCC in PubMed, EMBASE, ISI Web of Science, Cochrane Central Register of Controlled Trials, ScienceDirect, Wiley Online Library and Chinese National Knowledge Infrastructure databases. Data from eligible studies were extracted for meta-analysis. HCC risk associated with the two polymorphisms was estimated by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). 5 studies on rs2910164 and 4 studies on rs11614913 were included in our meta-analysis. Our results showed that neither allele frequency nor genotype distribution of the two polymorphisms was associated with risk for HCC in all genetic models. Similarly, subgroup analysis in Chinese population showed no association between the two SNPs and the susceptibility to HCC. CONCLUSIONS/SIGNIFICANCE: This meta-analysis suggests that two common SNPs rs2910164 and rs11614913 are not associated with the risk of HCC. Well-designed studies with larger sample size and more ethnic groups are required to further validate the results
- …