2,058 research outputs found

    Conditional transfer of quantum correlation in the intensity of twin beams

    Full text link
    A conditional protocol of transferring quantum-correlation in continuous variable regime was experimentally demonstrated. The quantum-correlation in two pairs of twin beams, each characterized by intensity-difference squeezing of 7.0 dB, was transferred to two initially independent idler beams. The quantum-correlation transfer resulted in intensity-difference squeezing of 4.0 dB between two idler beams. The dependence of preparation probability and transfer fidellity on the selection bandwidth was also studied.Comment: 5 pages, submitte

    Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs

    Full text link
    We present a search for lepton-flavor-violating tau decays into three leptons (electrons or muons) using 782 fb^-1 of data collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. No evidence for these decays is observed and we set 90% confidence level upper limits on the branching fractions between 1.5 x 10^-8 and 2.7 x 10^-8.Comment: 13 pages, 7 figure

    The radiative lepton flavor violating decays in the split fermion scenario in the two Higgs doublet model

    Full text link
    We study the branching ratios of the lepton flavor violating processes \mu -> e \gamma, \tau -> e \gamma and \tau -> \mu\gamma in the split fermion scenario, in the framework of the two Higgs doublet model. We observe that the branching ratios are relatively more sensitive to the compactification scale and the Gaussian widths of the leptons in the extra dimensions, for two extra dimensions and especially for the \tau -> \mu \gamma decay.Comment: 19 pages, 7 Figure

    A New Noncommutative Product on the Fuzzy Two-Sphere Corresponding to the Unitary Representation of SU(2) and the Seiberg-Witten Map

    Get PDF
    We obtain a new explicit expression for the noncommutative (star) product on the fuzzy two-sphere which yields a unitary representation. This is done by constructing a star product, ⋆λ\star_{\lambda}, for an arbitrary representation of SU(2) which depends on a continuous parameter λ\lambda and searching for the values of λ\lambda which give unitary representations. We will find two series of values: λ=λj(A)=1/(2j)\lambda = \lambda^{(A)}_j=1/(2j) and λ=λj(B)=−1/(2j+2)\lambda=\lambda^{(B)}_j =-1/(2j+2), where j is the spin of the representation of SU(2). At λ=λj(A)\lambda = \lambda^{(A)}_j the new star product ⋆λ\star_{\lambda} has poles. To avoid the singularity the functions on the sphere must be spherical harmonics of order ℓ≀2j\ell \leq 2j and then ⋆λ\star_{\lambda} reduces to the star product ⋆\star obtained by Preusnajder. The star product at λ=λj(B)\lambda=\lambda^{(B)}_j, to be denoted by ∙\bullet, is new. In this case the functions on the fuzzy sphere do not need to be spherical harmonics of order ℓ≀2j\ell \leq 2j. Because in this case there is no cutoff on the order of spherical harmonics, the degrees of freedom of the gauge fields on the fuzzy sphere coincide with those on the commutative sphere. Therefore, although the field theory on the fuzzy sphere is a system with finite degrees of freedom, we can expect the existence of the Seiberg-Witten map between the noncommutative and commutative descriptions of the gauge theory on the sphere. We will derive the first few terms of the Seiberg-Witten map for the U(1) gauge theory on the fuzzy sphere by using power expansion around the commutative point λ=0\lambda=0.Comment: 15 pages, typos corrected, references added, a note adde

    Exponential Random Graph Modeling for Complex Brain Networks

    Get PDF
    Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the graph (clustering coefficient, degree distribution, etc.) have dominated connectivity research in neuroscience. Corresponding generative models have been developed to reproduce one of these features. However, the complexity inherent in whole-brain network data necessitates the development and use of tools that allow the systematic exploration of several features simultaneously and how they interact to form the global network architecture. ERGMs provide a statistically principled approach to the assessment of how a set of interacting local brain network features gives rise to the global structure. We illustrate the utility of ERGMs for modeling, analyzing, and simulating complex whole-brain networks with network data from normal subjects. We also provide a foundation for the selection of important local features through the implementation and assessment of three selection approaches: a traditional p-value based backward selection approach, an information criterion approach (AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF approach serves as the best method given the scientific interest in being able to capture and reproduce the structure of fitted brain networks

    Reductions of docosahexaenoic acid-containing phosphatidylcholine levels in the anterior horn of an ALS mouse model

    Get PDF
    AbstractIn this study, we analyzed the spatiotemporal alterations of phospholipid composition in the spinal cord of an amyotrophic lateral sclerosis (ALS) mouse model (G93A-mutated human superoxide dismutase 1 transgenic mice [SOD1G93A mice]) using imaging mass spectrometry (IMS), a powerful method to visualize spatial distributions of various types of molecules in situ. Using this technique, we deciphered the phospholipid distribution in the pre-symptomatic stage, early stage after disease onset, and terminal stages of disease in female SOD1G93A mouse spinal cords. These experiments revealed a significant decrease in levels of docosahexaenoic acid (DHA)-containing phosphatidylcholines (PCs), such as PC (diacyl-16:0/22:6), PC (diacyl-18:0/22:6), and PC (diacyl-18:1/22:6) in the L5 anterior horns of terminal stage (22-week-old) SOD1G93A mice. The reduction in PC (diacyl-16:0/22:6) level could be reflecting the loss of motor neurons themselves in the anterior horn of the spinal cord in ALS model mice. In contrast, other PCs, such as PC (diacyl-16:0/16:0), were observed specifically in the L5 dorsal horn gray matter, and their levels did not vary between ALS model mice and controls. Thus, our study showed a significant decrease in DHA-containing PCs, but not other PCs, in the terminal stage of ALS in model mice, which is likely to be a reflection of neuronal loss in the anterior horns of the spinal cords. Given its enrichment in dorsal sensory regions, the preservation of PC (diacyl-16:0/16:0) may be the result of spinal sensory neurons being unaffected in ALS. Taken together, these findings suggest that ALS spinal cords show significant alterations in PC metabolism only at the terminal stage of the disease, and that these changes are confined to specific anatomical regions and cell types

    Testing new physics with the electron g-2

    Get PDF
    We argue that the anomalous magnetic moment of the electron (a_e) can be used to probe new physics. We show that the present bound on new-physics contributions to a_e is 8*10^-13, but the sensitivity can be improved by about an order of magnitude with new measurements of a_e and more refined determinations of alpha in atomic-physics experiments. Tests on new-physics effects in a_e can play a crucial role in the interpretation of the observed discrepancy in the anomalous magnetic moment of the muon (a_mu). In a large class of models, new contributions to magnetic moments scale with the square of lepton masses and thus the anomaly in a_mu suggests a new-physics effect in a_e of (0.7 +- 0.2)*10^-13. We also present examples of new-physics theories in which this scaling is violated and larger effects in a_e are expected. In such models the value of a_e is correlated with specific predictions for processes with violation of lepton number or lepton universality, and with the electric dipole moment of the electron.Comment: 34 pages, 7 figures. Minor changes and references adde

    Study of the Baryon-Antibaryon Low-Mass Enhancements in Charmless Three-body Baryonic B Decays

    Full text link
    The angular distributions of the baryon-antibaryon low-mass enhancements seen in the charmless three-body baryonic B decays B+ -> p pbar K+, B0 -> p pbar Ks, and B0 -> p Lambdabar pi- are reported. A quark fragmentation interpretation is supported, while the gluonic resonance picture is disfavored. Searches for the Theta+ and Theta++ pentaquarks in the relevant decay modes and possible glueball states G with 2.2 GeV/c2 < M-ppbar < 2.4 GeV/c2 in the ppbar systems give null results. We set upper limits on the products of branching fractions, B(B0 -> Theta+ p)\times B(Theta+ -> p Ks) Theta++ pbar) \times B(Theta++ -> p K+) G K+) \times B(G -> p pbar) < 4.1 \times 10^{-7} at the 90% confidence level. The analysis is based on a 140 fb^{-1} data sample recorded on the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider.Comment: 14 pages, 13 figure files, update of hep-ex/0409010 for journal submisssio
    • 

    corecore