157 research outputs found

    Engineered DNA modifying enzymes: Components of a future strategy to cure HIV/AIDS

    Get PDF
    AbstractDespite phenomenal advances in AIDS therapy transforming the disease into a chronic illness for most patients, a routine cure for HIV infections remains a distant goal. However, a recent example of HIV eradication in a patient who had received CCR5-negative bone marrow cells after full-body irradiation has fuelled new hopes for a cure for AIDS. Here, we review new HIV treatment strategies that use sophisticated genome engineering to target HIV infections. These approaches offer new ways to tackle the infection, and alone or in conjunction with already established treatments, promise to transform HIV into a curable disease

    Marginally compact fractal trees with semiflexibility

    Full text link
    We study marginally compact macromolecular trees that are created by means of two different fractal generators. In doing so, we assume Gaussian statistics for the vectors connecting nodes of the trees. Moreover, we introduce bond-bond correlations that make the trees locally semiflexible. The symmetry of the structures allows an iterative construction of full sets of eigenmodes (notwithstanding the additional interactions that are present due to semiflexibility constraints), enabling us to get physical insights about the trees' behavior and to consider larger structures. Due to the local stiffness the self-contact density gets drastically reduced.Comment: 16 pages, 12 figures, accepted for publication in PR

    SeLOX—a locus of recombination site search tool for the detection and directed evolution of site-specific recombination systems

    Get PDF
    Site-specific recombinases have become a resourceful tool for genome engineering, allowing sophisticated in vivo DNA modifications and rearrangements, including the precise removal of integrated retroviruses from host genomes. In a recent study, a mutant form of Cre recombinase has been used to excise the provirus of a specific HIV-1 strain from the human genome. To achieve provirus excision, the Cre recombinase had to be evolved to recombine an asymmetric locus of recombination (lox)-like sequence present in the long terminal repeat (LTR) regions of a HIV-1 strain. One pre-requisite for this type of work is the identification of degenerate lox-like sites in genomic sequences. Given their nature—two inverted repeats flanking a spacer of variable length—existing search tools like BLAST or RepeatMasker perform poorly. To address this lack of available algorithms, we have developed the web-server SeLOX, which can identify degenerate lox-like sites within genomic sequences. SeLOX calculates a position weight matrix based on lox-like sequences, which is used to search genomic sequences. For computational efficiency, we transform sequences into binary space, which allows us to use a bit-wise AND Boolean operator for comparisons. Next to finding lox-like sites for Cre type recombinases in HIV LTR sequences, we have used SeLOX to identify lox-like sites in HIV LTRs for six yeast recombinases. We finally demonstrate the general usefulness of SeLOX in identifying lox-like sequences in large genomes by searching Cre type recombination sites in the entire human genome. SeLOX is freely available at http://selox.mpi-cbg.de/cgi-bin/selox/index

    Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    Get PDF
    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5'long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination

    Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice

    Get PDF
    Stable integration of HIV proviral DNA into host cell chromosomes, a hallmark and essential feature of the retroviral life cycle, establishes the infection permanently. Current antiretroviral combination drug therapy cannot cure HIV infection. However, expressing an engineered HIV-1 long terminal repeat (LTR) site-specific recombinase (Tre), shown to excise integrated proviral DNA in vitro, may provide a novel and highly promising antiviral strategy. We report here the conditional expression of Tre-recombinase from an advanced lentiviral self-inactivation (SIN) vector in HIV-infected cells. We demonstrate faithful transgene expression, resulting in accurate provirus excision in the absence of cytopathic effects. Moreover, pronounced Tre-mediated antiviral effects are demonstrated in vivo, particularly in humanized Rag2−/−γc−/− mice engrafted with either Tre-transduced primary CD4+ T cells, or Tre-transduced CD34+ hematopoietic stem and progenitor cells (HSC). Taken together, our data support the use of Tre-recombinase in novel therapy strategies aiming to provide a cure for HIV

    A Flow Cytometry-Based FRET Assay to Identify and Analyse Protein-Protein Interactions in Living Cells

    Get PDF
    Försters resonance energy transfer (FRET) microscopy is widely used for the analysis of protein interactions in intact cells. However, FRET microscopy is technically challenging and does not allow assessing interactions in large cell numbers. To overcome these limitations we developed a flow cytometry-based FRET assay and analysed interactions of human and simian immunodeficiency virus (HIV and SIV) Nef and Vpu proteins with cellular factors, as well as HIV Rev multimer-formation.Amongst others, we characterize the interaction of Vpu with CD317 (also termed Bst-2 or tetherin), a host restriction factor that inhibits HIV release from infected cells and demonstrate that the direct binding of both is mediated by the Vpu membrane-spanning region. Furthermore, we adapted our assay to allow the identification of novel protein interaction partners in a high-throughput format.The presented combination of FRET and FACS offers the precious possibility to discover and define protein interactions in living cells and is expected to contribute to the identification of novel therapeutic targets for treatment of human diseases

    In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation

    Get PDF
    Despite scientific evidence originating from two patients published to date that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure human immunodeficiency virus type 1 (HIV-1), the knowledge of immunological and virological correlates of cure is limited. Here we characterize a case of long-term HIV-1 remission of a 53-year-old male who was carefully monitored for more than 9 years after allogeneic CCR5Δ32/Δ32 HSCT performed for acute myeloid leukemia. Despite sporadic traces of HIV-1 DNA detected by droplet digital PCR and in situ hybridization assays in peripheral T cell subsets and tissue-derived samples, repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice did not reveal replication-competent virus. Low levels of immune activation and waning HIV-1-specific humoral and cellular immune responses indicated a lack of ongoing antigen production. Four years after analytical treatment interruption, the absence of a viral rebound and the lack of immunological correlates of HIV-1 antigen persistence are strong evidence for HIV-1 cure after CCR5Δ32/Δ32 HSCT

    Excision of HIV-1 Proviral DNA by Recombinant Cell Permeable Tre-Recombinase

    Get PDF
    Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART) into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR)-specific recombinase (Tre-recombinase) has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD) from the HIV-1 Tat trans-activator or the translocation motif (TLM) of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies
    corecore